IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v21y2013i1p3-24.html
   My bibliography  Save this article

A novel piecewise linear classifier based on polyhedral conic and max–min separabilities

Author

Listed:
  • Adil Bagirov
  • Julien Ugon
  • Dean Webb
  • Gurkan Ozturk
  • Refail Kasimbeyli

Abstract

In this paper, an algorithm for finding piecewise linear boundaries between pattern classes is developed. This algorithm consists of two main stages. In the first stage, a polyhedral conic set is used to identify data points which lie inside their classes, and in the second stage we exclude those points to compute a piecewise linear boundary using the remaining data points. Piecewise linear boundaries are computed incrementally starting with one hyperplane. Such an approach allows one to significantly reduce the computational effort in many large data sets. Results of numerical experiments are reported. These results demonstrate that the new algorithm consistently produces a good test set accuracy on most data sets comparing with a number of other mainstream classifiers. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • Adil Bagirov & Julien Ugon & Dean Webb & Gurkan Ozturk & Refail Kasimbeyli, 2013. "A novel piecewise linear classifier based on polyhedral conic and max–min separabilities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 3-24, April.
  • Handle: RePEc:spr:topjnl:v:21:y:2013:i:1:p:3-24
    DOI: 10.1007/s11750-011-0241-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-011-0241-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-011-0241-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Astorino & M. Gaudioso, 2002. "Polyhedral Separability Through Successive LP," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 265-293, February.
    2. Youngtae Park & Jack Sklansky, 1989. "Automated design of multiple-class piecewise linear classifiers," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 195-222, December.
    3. A. M. Bagirov & B. Karasözen & M. Sezer, 2008. "Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 317-334, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. R. Doagooei, 2015. "Minimum Type Functions, Plus-Cogauges, and Applications," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 551-564, February.
    2. A. Sheykhi & A. R. Doagooei, 2017. "Radiant Separation Theorems and Minimum-Type Subdifferentials of Calm Functions," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 693-711, September.
    3. Víctor Blanco & Alberto Japón & Justo Puerto, 2020. "Optimal arrangements of hyperplanes for SVM-based multiclass classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 175-199, March.
    4. Annabella Astorino & Antonio Fuduli, 2015. "Support Vector Machine Polyhedral Separability in Semisupervised Learning," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1039-1050, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
    2. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
    3. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    4. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    5. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    6. M. V. Dolgopolik, 2018. "A convergence analysis of the method of codifferential descent," Computational Optimization and Applications, Springer, vol. 71(3), pages 879-913, December.
    7. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    8. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    9. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    10. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    11. K. C. Kiwiel, 2010. "Improved Convergence Result for the Discrete Gradient and Secant Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 69-75, January.
    12. A. M. Bagirov & L. Jin & N. Karmitsa & A. Al Nuaimat & N. Sultanova, 2013. "Subgradient Method for Nonconvex Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 416-435, May.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    14. Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
    15. Annabella Astorino & Antonio Fuduli, 2015. "Support Vector Machine Polyhedral Separability in Semisupervised Learning," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1039-1050, March.
    16. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    17. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    18. M. Maleknia & M. Shamsi, 2020. "A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 379-409, November.
    19. Nezam Mahdavi-Amiri & Rohollah Yousefpour, 2012. "An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 180-195, October.
    20. A. Astorino & M. Gaudioso, 2009. "A fixed-center spherical separation algorithm with kernel transformations for classification problems," Computational Management Science, Springer, vol. 6(3), pages 357-372, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:21:y:2013:i:1:p:3-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.