IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i3d10.1007_s10957-013-0458-6.html
   My bibliography  Save this article

Support Vector Machine Polyhedral Separability in Semisupervised Learning

Author

Listed:
  • Annabella Astorino

    (Università della Calabria)

  • Antonio Fuduli

    (Università della Calabria)

Abstract

We introduce separation margin maximization, a characteristic of the Support Vector Machine technique, into the approach to binary classification based on polyhedral separability and we adopt a semisupervised classification framework. In particular, our model aims at separating two finite and disjoint sets of points by means of a polyhedral surface in the semisupervised case, that is, by exploiting information coming from both labeled and unlabeled samples. Our formulation requires the minimization of a nonconvex nondifferentiable error function. Numerical results are presented on several data sets drawn from the literature.

Suggested Citation

  • Annabella Astorino & Antonio Fuduli, 2015. "Support Vector Machine Polyhedral Separability in Semisupervised Learning," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1039-1050, March.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-013-0458-6
    DOI: 10.1007/s10957-013-0458-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0458-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0458-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Astorino & M. Gaudioso, 2002. "Polyhedral Separability Through Successive LP," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 265-293, February.
    2. Adil Bagirov & Julien Ugon & Dean Webb & Gurkan Ozturk & Refail Kasimbeyli, 2013. "A novel piecewise linear classifier based on polyhedral conic and max–min separabilities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 3-24, April.
    3. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    4. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    5. Hoai Le Thi & Hoai Le & Tao Pham Dinh & Ngai Van Huynh, 2013. "Binary classification via spherical separator by DC programming and DCA," Journal of Global Optimization, Springer, vol. 56(4), pages 1393-1407, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    2. Xeniya Vladimirovna Grigor’eva, 2016. "Approximate Functions in a Problem of Sets Separation," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 550-572, November.
    3. Veronica Piccialli & Marco Sciandrone, 2022. "Nonlinear optimization and support vector machines," Annals of Operations Research, Springer, vol. 314(1), pages 15-47, July.
    4. Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2015. "Optimal Replenishment Order Placement in a Finite Time Horizon," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1078-1089, March.
    2. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    3. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    4. A. Astorino & M. Gaudioso & W. Khalaf, 2014. "Edge detection by spherical separation," Computational Management Science, Springer, vol. 11(4), pages 517-530, October.
    5. Annabella Astorino & Manlio Gaudioso & Alberto Seeger, 2014. "An illumination problem: optimal apex and optimal orientation for a cone of light," Journal of Global Optimization, Springer, vol. 58(4), pages 729-750, April.
    6. Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
    7. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    8. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    9. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    10. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    11. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    12. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    13. Hoai Le Thi & Hoai Le & Tao Pham Dinh & Ngai Van Huynh, 2013. "Binary classification via spherical separator by DC programming and DCA," Journal of Global Optimization, Springer, vol. 56(4), pages 1393-1407, August.
    14. Adil Bagirov & Julien Ugon & Dean Webb & Gurkan Ozturk & Refail Kasimbeyli, 2013. "A novel piecewise linear classifier based on polyhedral conic and max–min separabilities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 3-24, April.
    15. Liming Yang & Laisheng Wang, 2013. "A class of semi-supervised support vector machines by DC programming," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 417-433, December.
    16. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    17. Víctor Blanco & Alberto Japón & Justo Puerto, 2020. "Optimal arrangements of hyperplanes for SVM-based multiclass classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 175-199, March.
    18. A. R. Doagooei, 2015. "Minimum Type Functions, Plus-Cogauges, and Applications," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 551-564, February.
    19. M. Maleknia & M. Shamsi, 2020. "A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 379-409, November.
    20. Le Thi, H.A. & Pham Dinh, T. & Le, H.M. & Vo, X.T., 2015. "DC approximation approaches for sparse optimization," European Journal of Operational Research, Elsevier, vol. 244(1), pages 26-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-013-0458-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.