IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i2d10.1007_s10957-014-0584-9.html
   My bibliography  Save this article

Minimum Type Functions, Plus-Cogauges, and Applications

Author

Listed:
  • A. R. Doagooei

    (Shahid Bahonar University of Kerman)

Abstract

In this paper, the concept of plus-cogauge is introduced. It is shown that this class of functions can be considered as an extension of the class of so-called min-type functions in normed linear spaces. We deduce that a plus-cogauge is superlinear and continuous, if and only if it is superlinear on the normed space $$X$$ X and linear on a nontrivial subspace of $$X$$ X . A cone separation theorem for closed radiant sets is obtained, which plays a key role in solving large-scale knowledge-based data classification problems. We shall also identify $$n$$ n -linear independent vectors in the Euclidean space to separate a closed radiant set from a point, which does not belong to the set.

Suggested Citation

  • A. R. Doagooei, 2015. "Minimum Type Functions, Plus-Cogauges, and Applications," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 551-564, February.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:2:d:10.1007_s10957-014-0584-9
    DOI: 10.1007/s10957-014-0584-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0584-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0584-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adil Bagirov & Julien Ugon & Dean Webb & Gurkan Ozturk & Refail Kasimbeyli, 2013. "A novel piecewise linear classifier based on polyhedral conic and max–min separabilities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 3-24, April.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    4. Alberto Zaffaroni, 2004. "Is every radiant function the sum of quasiconvex functions?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(2), pages 221-233, June.
    5. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    2. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    3. Stoica, George, 2006. "Relevant coherent measures of risk," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 794-806, September.
    4. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2013. "Measuring risk with multiple eligible assets," Papers 1308.3331, arXiv.org, revised Mar 2014.
    5. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    6. Kountzakis, C. & Polyrakis, I.A., 2013. "Coherent risk measures in general economic models and price bubbles," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 201-209.
    7. Bentahar, Imen, 2006. "Tail Conditional Expectation for vector-valued risks," SFB 649 Discussion Papers 2006-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    9. Pal, Soumik, 2007. "Computing strategies for achieving acceptability: A Monte Carlo approach," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1587-1605, November.
    10. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    11. Fei Sun & Yijun Hu, 2018. "Systemic risk measures with markets volatility," Papers 1812.06185, arXiv.org, revised Jun 2019.
    12. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    13. Hirbod Assa & Nikolay Gospodinov, 2018. "Market consistent valuations with financial imperfection," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(1), pages 65-90, May.
    14. Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
    15. A. Sheykhi & A. R. Doagooei, 2017. "Radiant Separation Theorems and Minimum-Type Subdifferentials of Calm Functions," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 693-711, September.
    16. Konstantinides, Dimitrios G. & Kountzakis, Christos E., 2011. "Risk measures in ordered normed linear spaces with non-empty cone-interior," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 111-122, January.
    17. Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.
    18. Erio Castagnoli & Giacomo Cattelan & Fabio Maccheroni & Claudio Tebaldi & Ruodu Wang, 2021. "Star-shaped Risk Measures," Papers 2103.15790, arXiv.org, revised Apr 2022.
    19. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2012. "Beyond cash-additive risk measures: when changing the num\'{e}raire fails," Papers 1206.0478, arXiv.org, revised Feb 2014.
    20. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:2:d:10.1007_s10957-014-0584-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.