IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v19y2010i1p1-29.html
   My bibliography  Save this article

Dynamic relations for sparsely sampled Gaussian processes

Author

Listed:
  • Hans-Georg Müller
  • Wenjing Yang

Abstract

No abstract is available for this item.

Suggested Citation

  • Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
  • Handle: RePEc:spr:testjl:v:19:y:2010:i:1:p:1-29
    DOI: 10.1007/s11749-009-0176-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-009-0176-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-009-0176-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Müller, Hans-Georg & Yao, Fang, 2008. "Functional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1534-1544.
    2. André Mas & Besnik Pumo, 2009. "Functional linear regression with derivatives," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 19-40.
    3. Kneip, Alois & Ramsay, James O, 2008. "Combining Registration and Fitting for Functional Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1155-1165.
    4. Colin Wu & Kai Yu & Chin-Tsang Chiang, 2000. "A Two-Step Smoothing Method for Varying-Coefficient Models with Repeated Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 519-543, September.
    5. Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
    6. Hervé Cardot & Frédéric Ferraty & André Mas & Pascal Sarda, 2003. "Testing Hypotheses in the Functional Linear Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 241-255, March.
    7. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    8. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    9. Wang, Shanshan & Jank, Wolfgang & Shmueli, Galit & Smith, Paul, 2008. "Modeling Price Dynamics in eBay Auctions Using Differential Equations," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1100-1118.
    10. Fang Yao & Thomas C. M. Lee, 2006. "Penalized spline models for functional principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 3-25, February.
    11. Dubin, Joel A. & Muller, Hans-Georg, 2005. "Dynamical Correlation for Multivariate Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 872-881, September.
    12. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    13. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    14. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    15. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    16. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    17. Cardot, Herve & Crambes, Christophe & Kneip, Alois & Sarda, Pascal, 2007. "Smoothing splines estimators in functional linear regression with errors-in-variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4832-4848, June.
    18. Lan Zhou & Jianhua Z. Huang & Raymond J. Carroll, 2008. "Joint modelling of paired sparse functional data using principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 601-619.
    19. He, Guozhong & Müller, Hans-Georg & Wang, Jane-Ling, 2003. "Functional canonical analysis for square integrable stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 54-77, April.
    20. Eubank, R.L. & Hsing, Tailen, 2008. "Canonical correlation for stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1634-1661, September.
    21. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    22. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    23. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Siteng & Lin, Shu-Chin & Wang, Jane-Ling & Zhong, Qixian, 2024. "Dynamic modeling for multivariate functional and longitudinal data," Journal of Econometrics, Elsevier, vol. 239(2).
    2. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    3. Laha, A. K. & Rathi, Poonam, 2017. "New Approaches to Prediction using Functional Data Analysis," IIMA Working Papers WP 2017-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. González-Rodríguez, Gil & Colubi, Ana & Gil, María Ángeles, 2012. "Fuzzy data treated as functional data: A one-way ANOVA test approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 943-955.
    5. Laha, A. K. & Rathi, Poonam, 2017. "Are the temperature of Indian cities Increasing?: Some Insights Using Change Point Analysis with Functional Data," IIMA Working Papers WP 2017-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    2. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    3. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    4. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    5. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
    7. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    8. Zhou, Yang & Lin, Shu-Chin & Wang, Jane-Ling, 2018. "Local and global temporal correlations for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 1-14.
    9. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    10. Shin, Yei Eun & Zhou, Lan & Ding, Yu, 2022. "Joint estimation of monotone curves via functional principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    11. Shin, Hyejin & Lee, Seokho, 2015. "Canonical correlation analysis for irregularly and sparsely observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 1-18.
    12. Hao, Siteng & Lin, Shu-Chin & Wang, Jane-Ling & Zhong, Qixian, 2024. "Dynamic modeling for multivariate functional and longitudinal data," Journal of Econometrics, Elsevier, vol. 239(2).
    13. Shakhawat Hossain & Le An Lac, 2021. "Optimal shrinkage estimations in partially linear single-index models for binary longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 811-835, December.
    14. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    15. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.
    16. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    17. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    18. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    19. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    20. Shuang Wu & Hans-Georg Müller, 2011. "Response-Adaptive Regression for Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 852-860, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:19:y:2010:i:1:p:1-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.