IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i1d10.1007_s11749-018-0601-7.html
   My bibliography  Save this article

Jackknife empirical likelihood inference for the accelerated failure time model

Author

Listed:
  • Xue Yu

    (Georgia State University)

  • Yichuan Zhao

    (Georgia State University)

Abstract

Accelerated failure time (AFT) model is a useful semi-parametric model under right censoring, which is an alternative to the commonly used proportional hazards model. Making statistical inference for the AFT model has attracted considerable attention. However, it is difficult to compute the estimators of regression parameters due to the lack of smoothness for rank-based estimating equations. Brown and Wang (Stat Med 26(4):828–836, 2007) used an induced smoothing approach, which smooths the estimating functions to obtain point and variance estimators. In this paper, a more computationally efficient method called jackknife empirical likelihood (JEL) is proposed to make inference for the accelerated failure time model without computing the limiting variance. Results from extensive simulation suggest that the JEL method outperforms the traditional normal approximation method in most cases. Subsequently, two real data sets are analyzed for illustration of the proposed method.

Suggested Citation

  • Xue Yu & Yichuan Zhao, 2019. "Jackknife empirical likelihood inference for the accelerated failure time model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 269-288, March.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:1:d:10.1007_s11749-018-0601-7
    DOI: 10.1007/s11749-018-0601-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-018-0601-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-018-0601-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yichuan Zhao & Song Yang, 2012. "Empirical likelihood confidence intervals for regression parameters of the survival rate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 59-70.
    2. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    3. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    4. Zhouping Li & Jinfeng Xu & Wang Zhou, 2016. "On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 49-69, March.
    5. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    6. Lynn M. Johnson & Robert L. Strawderman, 2009. "Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data," Biometrika, Biometrika Trust, vol. 96(3), pages 577-590.
    7. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    8. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    9. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    10. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    11. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.
    12. Heller, Glenn, 2007. "Smoothed Rank Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 552-559, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faysal Satter & Yichuan Zhao & Ni Li, 2024. "Empirical likelihood inference for the panel count data with informative observation process," Statistical Papers, Springer, vol. 65(5), pages 3039-3061, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xue & Zhao, Yichuan, 2019. "Empirical likelihood inference for semi-parametric transformation models with length-biased sampling," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 115-125.
    2. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    3. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    4. Liya Fu & Zhuoran Yang & Yan Zhou & You-Gan Wang, 2021. "An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 679-709, October.
    5. Amorim, G. & Thas, O. & Vermeulen, K. & Vansteelandt, S. & De Neve, J., 2018. "Small sample inference for probabilistic index models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 137-148.
    6. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    7. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    8. Chiou, Sy Han & Kang, Sangwook & Yan, Jun, 2014. "Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i11).
    9. Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
    10. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    11. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    12. Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.
    13. Longlong Huang & Karen Kopciuk & Xuewen Lu, 2018. "Smoothed Jackknife Empirical Likelihood for Weighted Rank Regression with Censored Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 48-67, April.
    14. Xiaohui Yuan & Huixian Li & Tianqing Liu, 2021. "Empirical likelihood inference for rank regression with doubly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 25-73, March.
    15. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    16. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    18. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    19. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    20. Zhouping Li & Jinfeng Xu & Wang Zhou, 2016. "On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 49-69, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:1:d:10.1007_s11749-018-0601-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.