IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v152y2020ics0167947320301407.html
   My bibliography  Save this article

Jackknife empirical likelihood inference for the Pietra ratio

Author

Listed:
  • Zhao, Yichuan
  • Su, Yueju
  • Yang, Hanfang

Abstract

The Pietra ratio (Pietra index) is also known as the Robin Hood index or Schutz coefficient (Ricci–Schutz index). It is a measure of statistical heterogeneity in positive random variables. In this paper, we propose the jackknife empirical likelihood (JEL), the adjusted JEL, the extended JEL, and the balanced adjusted JEL method, for interval estimation of the Pietra ratio. We compare the performance of the proposed methods with the normal approximation (NA), bootstrap based methods and NA jackknife method. Simulation results indicate that under both symmetric and skewed distributions, the extended JEL method gives the best performance in terms of coverage probability. We illustrate the proposed methods by applying our methods to investigate the income data from the 2013 Current Population Survey conducted by the US Census Bureau.

Suggested Citation

  • Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301407
    DOI: 10.1016/j.csda.2020.107049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301407
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    2. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    3. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    4. Liang Peng & Yongcheng Qi, 2010. "Smoothed jackknife empirical likelihood method for tail copulas," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 514-536, November.
    5. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    6. Gastwirth, Joseph L, 1974. "Large Sample Theory of Some Measures of Income Inequality," Econometrica, Econometric Society, vol. 42(1), pages 191-196, January.
    7. Yang, Hanfang & Zhao, Yichuan, 2018. "Smoothed jackknife empirical likelihood for the one-sample difference of quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 58-69.
    8. Eliazar, Iddo I. & Sokolov, Igor M., 2010. "Measuring statistical heterogeneity: The Pietra index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 117-125.
    9. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    10. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    11. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    12. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    13. Wang, Hongkun & Zhao, Yichuan, 2009. "A comparison of some confidence intervals for the mean quality-adjusted lifetime with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2733-2739, May.
    14. Chen, Jian & Peng, Liang & Zhao, Yichuan, 2009. "Empirical likelihood based confidence intervals for copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 137-151, January.
    15. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    2. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    3. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    4. Yang, Hanfang & Zhao, Yichuan, 2018. "Smoothed jackknife empirical likelihood for the one-sample difference of quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 58-69.
    5. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    6. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    7. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    8. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    9. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    10. Yueheng An & Yichuan Zhao, 2018. "Jackknife empirical likelihood for the difference of two volumes under ROC surfaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 789-806, August.
    11. Zhang, Xiuzhen & Lu, Zhiping & Wang, Yangye & Zhang, Riquan, 2020. "Adjusted jackknife empirical likelihood for stationary ARMA and ARFIMA models," Statistics & Probability Letters, Elsevier, vol. 165(C).
    12. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    13. Zhong, Ping-Shou & Chen, Sixia, 2014. "Jackknife empirical likelihood inference with regression imputation and survey data," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 193-205.
    14. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    15. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    16. Zhang, Rongmao & Peng, Liang & Qi, Yongcheng, 2012. "Jackknife-blockwise empirical likelihood methods under dependence," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 56-72, February.
    17. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    18. Amorim, G. & Thas, O. & Vermeulen, K. & Vansteelandt, S. & De Neve, J., 2018. "Small sample inference for probabilistic index models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 137-148.
    19. Ai-Ai Liu & Han-Ying Liang, 2017. "Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models," Statistical Papers, Springer, vol. 58(1), pages 95-122, March.
    20. Shan Luo & Gengsheng Qin, 2017. "New non-parametric inferences for low-income proportions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 599-626, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.