IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v061i11.html
   My bibliography  Save this article

Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee

Author

Listed:
  • Chiou, Sy Han
  • Kang, Sangwook
  • Yan, Jun

Abstract

Accelerated failure time (AFT) models are alternatives to relative risk models which are used extensively to examine the covariate effects on event times in censored data regression. Nevertheless, AFT models have been much less utilized in practice due to lack of reliable computing methods and software. This paper describes an R package aftgee that implements recently developed inference procedures for AFT models with both the rank-based approach and the least squares approach. For the rank-based approach, the package allows various weight choices and uses an induced smoothing procedure that leads to much more efficient computation than the linear programming method. With the rank-based estimator as an initial value, the generalized estimating equation approach is used as an extension of the least squares approach to the multivariate case. Additional sampling weights are incorporated to handle missing data needed as in case-cohort studies or general sampling schemes. A simulated dataset and two real life examples from biomedical research are employed to illustrate the usage of the package.

Suggested Citation

  • Chiou, Sy Han & Kang, Sangwook & Yan, Jun, 2014. "Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i11).
  • Handle: RePEc:jss:jstsof:v:061:i11
    DOI: http://hdl.handle.net/10.18637/jss.v061.i11
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v061i11/v61i11.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v061i11/aftgee_1.0-0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v061i11/v61i11.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v061.i11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    2. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    3. Lynn M. Johnson & Robert L. Strawderman, 2009. "Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data," Biometrika, Biometrika Trust, vol. 96(3), pages 577-590.
    4. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    5. He, Wenqing & Xiong, Juan & Yi, Grace Y., 2012. "SIMEX R Package for Accelerated Failure Time Models with Covariate Measurement Error," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 46(c01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jad Beyhum & Ingrid Keilegom, 2023. "Robust censored regression with $$\ell _1$$ ℓ 1 -norm regularization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 146-162, March.
    2. Byungtae Seo & Sangwook Kang, 2023. "Accelerated failure time modeling via nonparametric mixtures," Biometrics, The International Biometric Society, vol. 79(1), pages 165-177, March.
    3. Marc Buyse & Everardo D. Saad & Tomasz Burzykowski & Julien Péron, 2020. "Assessing Treatment Benefit in Immuno-oncology," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 83-103, July.
    4. Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liya Fu & Zhuoran Yang & Yan Zhou & You-Gan Wang, 2021. "An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 679-709, October.
    2. Xue Yu & Yichuan Zhao, 2019. "Jackknife empirical likelihood inference for the accelerated failure time model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 269-288, March.
    3. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    4. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    5. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    6. Li, Haifen & Zhang, Jiajia & Tang, Yincai, 2012. "Induced smoothing for the semiparametric accelerated hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4312-4319.
    7. Byungtae Seo & Sangwook Kang, 2023. "Accelerated failure time modeling via nonparametric mixtures," Biometrics, The International Biometric Society, vol. 79(1), pages 165-177, March.
    8. Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
    9. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    10. Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.
    11. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    12. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    13. Martin Gaynor & Nirav Mehta & Seth Richards-Shubik, 2023. "Optimal Contracting with Altruistic Agents: Medicare Payments for Dialysis Drugs," American Economic Review, American Economic Association, vol. 113(6), pages 1530-1571, June.
    14. Legrand, Catherine & Munda, Marco & Janssen, P. & Duchateau, L., 2012. "A general class of time-varying coefficients models for right censored data," LIDAM Discussion Papers ISBA 2012041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    16. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    17. You-Gan Wang & Yudong Zhao, 2008. "Weighted Rank Regression for Clustered Data Analysis," Biometrics, The International Biometric Society, vol. 64(1), pages 39-45, March.
    18. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    19. Nathan H. Miller & Matthew Osborne, 2014. "Spatial differentiation and price discrimination in the cement industry: evidence from a structural model," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 221-247, June.
    20. Bella Vakulenko‐Lagun & Micha Mandel & Rebecca A. Betensky, 2020. "Inverse probability weighting methods for Cox regression with right‐truncated data," Biometrics, The International Biometric Society, vol. 76(2), pages 484-495, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:061:i11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.