IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v132y2019icp115-125.html
   My bibliography  Save this article

Empirical likelihood inference for semi-parametric transformation models with length-biased sampling

Author

Listed:
  • Yu, Xue
  • Zhao, Yichuan

Abstract

The semi-parametric transformation models under length-biased sampling are considered. The well-known proportional hazards model and proportional odds model are special cases of the semi-parametric transformation models. Empirical likelihood and adjusted empirical likelihood inferences for semi-parametric transformation models with length-biased sampling are proposed, and the empirical log-likelihood ratio test statistic is shown to converge to a standard chi-squared distribution. In addition, statistical inferences for the regression parameters are made based on the results. Moreover, extensive simulation studies are carried out. Finally, a real data set is analyzed to illustrate the proposed empirical likelihood and adjusted empirical likelihood methods.

Suggested Citation

  • Yu, Xue & Zhao, Yichuan, 2019. "Empirical likelihood inference for semi-parametric transformation models with length-biased sampling," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 115-125.
  • Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:115-125
    DOI: 10.1016/j.csda.2018.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318302573
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yichuan Zhao & Song Yang, 2012. "Empirical likelihood confidence intervals for regression parameters of the survival rate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 59-70.
    2. Qi-Hua Wang & Bing-Yi Jing, 2001. "Empirical Likelihood for a Class of Functionals of Survival Distribution with Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 517-527, September.
    3. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    4. Zhao, Yichuan, 2010. "Semiparametric inference for transformation models via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1846-1858, September.
    5. Wang, Dongliang & Zhao, Yichuan & Gilmore, Dirk W., 2016. "Jackknife empirical likelihood confidence interval for the Gini index," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 289-295.
    6. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    7. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    8. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    9. Mai Zhou, 2005. "Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model," Biometrika, Biometrika Trust, vol. 92(2), pages 492-498, June.
    10. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.
    11. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    12. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue Yu & Yichuan Zhao, 2019. "Jackknife empirical likelihood inference for the accelerated failure time model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 269-288, March.
    2. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    3. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    4. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    5. Ming Zheng & Wen Yu, 2013. "Empirical likelihood method for multivariate Cox regression," Computational Statistics, Springer, vol. 28(3), pages 1241-1267, June.
    6. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    7. Zhao, Yichuan, 2010. "Semiparametric inference for transformation models via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1846-1858, September.
    8. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    9. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    10. Amorim, G. & Thas, O. & Vermeulen, K. & Vansteelandt, S. & De Neve, J., 2018. "Small sample inference for probabilistic index models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 137-148.
    11. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    12. Bravo, Francesco, 2009. "Two-step generalised empirical likelihood inference for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1412-1431, August.
    13. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    14. Xiaohui Yuan & Huixian Li & Tianqing Liu, 2021. "Empirical likelihood inference for rank regression with doubly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 25-73, March.
    15. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    16. Shen, Junshan & Yuen, Kam Chuen & Liu, Chunling, 2016. "Empirical likelihood confidence regions for one- or two- samples with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 285-293.
    17. Faysal Satter & Yichuan Zhao & Ni Li, 2024. "Empirical likelihood inference for the panel count data with informative observation process," Statistical Papers, Springer, vol. 65(5), pages 3039-3061, July.
    18. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    19. Wang, Xuan & Wang, Qihua, 2015. "Semiparametric linear transformation model with differential measurement error and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 67-80.
    20. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:115-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.