IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i1d10.1007_s10182-020-00374-5.html
   My bibliography  Save this article

Empirical likelihood inference for rank regression with doubly truncated data

Author

Listed:
  • Xiaohui Yuan

    (Changchun University of Technology)

  • Huixian Li

    (Changchun University of Technology)

  • Tianqing Liu

    (Jilin University)

Abstract

For regression analysis of doubly truncated data, we propose two empirical likelihood (EL) inference approaches, called non-smooth EL and non-smooth Jackknife EL (JEL), to make inference about regression parameters based on the generalized estimating equations of existing weighted rank estimators. The limiting distributions of non-smooth log-EL and log-JEL ratios statistics are derived and non-smooth EL, and JEL confidence intervals for any specified component of regression parameters are obtained. We carry out extensive simulation studies to compare the proposed approaches with the random weighting (RW) approach. The simulation results demonstrate that the non-smooth EL and JEL confidence intervals have better performances than the RW confidence intervals based on coverage probability and average length of confidence intervals of regression parameters when the dependent variable is subject to the double truncation. A real data example is provided to illustrate the proposed approaches.

Suggested Citation

  • Xiaohui Yuan & Huixian Li & Tianqing Liu, 2021. "Empirical likelihood inference for rank regression with doubly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 25-73, March.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:1:d:10.1007_s10182-020-00374-5
    DOI: 10.1007/s10182-020-00374-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-020-00374-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-020-00374-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    2. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    3. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    4. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    5. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
    6. Zhouping Li & Jinfeng Xu & Wang Zhou, 2016. "On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 49-69, March.
    7. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    8. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    9. Chenlei Leng & Cheng Yong Tang, 2012. "Penalized empirical likelihood and growing dimensional general estimating equations," Biometrika, Biometrika Trust, vol. 99(3), pages 703-716.
    10. Zhao, Yichuan, 2010. "Semiparametric inference for transformation models via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1846-1858, September.
    11. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    12. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    13. Carla Moreira & Jacobo de Uña-Álvarez, 2010. "Bootstrapping the NPMLE for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 567-583.
    14. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2008. "Empirical likelihood for non-degenerate U-statistics," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 599-607, April.
    15. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
    16. Feng, Huijun & Peng, Liang, 2012. "Jackknife empirical likelihood tests for error distributions in regression models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 63-75.
    17. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    18. Cheng Yong Tang & Chenlei Leng, 2010. "Penalized high-dimensional empirical likelihood," Biometrika, Biometrika Trust, vol. 97(4), pages 905-920.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    2. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    3. Zhouping Li & Jinfeng Xu & Wang Zhou, 2016. "On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 49-69, March.
    4. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    5. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    6. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    7. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    8. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    9. Xue Yu & Yichuan Zhao, 2019. "Jackknife empirical likelihood inference for the accelerated failure time model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 269-288, March.
    10. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    11. Yongli Sang & Xin Dang & Yichuan Zhao, 2020. "Depth-based weighted jackknife empirical likelihood for non-smooth U-structure equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 573-598, June.
    12. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    13. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    14. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    15. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    16. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    17. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    18. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2020. "Inference on Semiparametric Multinomial Response Models," Discussion Papers Series 627, School of Economics, University of Queensland, Australia.
    19. repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    20. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2019. "Inference on Semiparametric Multinomial Response Models," Boston College Working Papers in Economics 980, Boston College Department of Economics.
    21. Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:1:d:10.1007_s10182-020-00374-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.