IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v20y2013i1p23-38.html
   My bibliography  Save this article

The Impact Of Feature Selection: A Data‐Mining Application In Direct Marketing

Author

Listed:
  • Ding‐Wen Tan
  • William Yeoh
  • Yee Ling Boo
  • Soung‐Yue Liew

Abstract

The capability of identifying customers who are more likely to respond to a product is an important issue in direct marketing. This paper investigates the impact of feature selection on predictive models which predict reordering demand of small and medium‐sized enterprise customers in a large online job‐advertising company. Three well‐known feature subset selection techniques in data mining, namely correlation‐based feature selection (CFS), subset consistency (SC) and symmetrical uncertainty (SU), are applied in this study. The results show that the predictive models using SU outperform those without feature selection and those with the CFS and SC feature subset evaluators. This study has examined and demonstrated the significance of applying the feature‐selection approach to enhance the accuracy of predictive modelling in a direct‐marketing context. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Ding‐Wen Tan & William Yeoh & Yee Ling Boo & Soung‐Yue Liew, 2013. "The Impact Of Feature Selection: A Data‐Mining Application In Direct Marketing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(1), pages 23-38, January.
  • Handle: RePEc:wly:isacfm:v:20:y:2013:i:1:p:23-38
    DOI: 10.1002/isaf.1335
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1335
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    2. Sikora, Riyaz & Piramuthu, Selwyn, 2007. "Framework for efficient feature selection in genetic algorithm based data mining," European Journal of Operational Research, Elsevier, vol. 180(2), pages 723-737, July.
    3. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    4. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    5. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    6. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    7. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    8. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    9. Piramuthu, Selwyn, 2004. "Evaluating feature selection methods for learning in data mining applications," European Journal of Operational Research, Elsevier, vol. 156(2), pages 483-494, July.
    10. Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    2. Georgios Marinakos & Sophia Daskalaki, 2017. "Imbalanced customer classification for bank direct marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(1), pages 14-30, March.
    3. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    4. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    5. Gitae Kim & Bongsug Chae & David Olson, 2013. "A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 7(1), pages 167-182, March.
    6. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    7. Zhiqiang Zheng & Balaji Padmanabhan & Steven O. Kimbrough, 2003. "On the Existence and Significance of Data Preprocessing Biases in Web-Usage Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 148-170, May.
    8. Herings, P.J.J. & Talman, A.J.J. & Yang, Z.F., 1999. "Variational Inequality Problems With a Continuum of Solutions : Existence and Computation," Other publications TiSEM 73e2f01b-ad4d-4447-95ba-a, Tilburg University, School of Economics and Management.
    9. Carlos R. Handy & Daniel Vrinceanu & Carl B. Marth & Harold A. Brooks, 2015. "Pointwise Reconstruction of Wave Functions from Their Moments through Weighted Polynomial Expansions: An Alternative Global-Local Quantization Procedure," Mathematics, MDPI, vol. 3(4), pages 1-24, November.
    10. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    11. Bode, Sven & Michaelowa, Axel, 2003. "Avoiding perverse effects of baseline and investment additionality determination in the case of renewable energy projects," Energy Policy, Elsevier, vol. 31(6), pages 505-517, May.
    12. Ala, Guido & Fasshauer, Gregory E. & Francomano, Elisa & Ganci, Salvatore & McCourt, Michael J., 2017. "An augmented MFS approach for brain activity reconstruction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 3-15.
    13. Bettina Campedelli & Andrea Guerrina & Giulia Romano & Chiara Leardini, 2014. "La performance della rete ospedaliera pubblica della regione Veneto. L?impatto delle variabili ambientali e operative sull?efficienza," MECOSAN, FrancoAngeli Editore, vol. 2014(92), pages 119-142.
    14. Haider A. Khan, 2004. "General Conclusions: From Crisis to a Global Political Economy of Freedom," Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211, Palgrave Macmillan.
    15. Penn Loh & Zoë Ackerman & Joceline Fidalgo & Rebecca Tumposky, 2022. "Co-Education/Co-Research Partnership: A Critical Approach to Co-Learning between Dudley Street Neighborhood Initiative and Tufts University," Social Sciences, MDPI, vol. 11(2), pages 1-17, February.
    16. Broekhuis, Manda & Vos, Janita F.J., 2003. "Improving organizational sustainability using a quality perspective," Research Report 03A43, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    17. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    18. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2002. "Perfection and Stability of Stationary Points with Applications in Noncooperative Games," Discussion Paper 2002-108, Tilburg University, Center for Economic Research.
    19. Edcarlos D. Silva & J. C. Albuquerque & T. R. Cavalcante, 2021. "Fourth-order nonlocal type elliptic problems with indefinite nonlinearities," Partial Differential Equations and Applications, Springer, vol. 2(2), pages 1-22, April.
    20. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:20:y:2013:i:1:p:23-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.