IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v24y2005i4p595-615.html
   My bibliography  Save this article

Prediction in Marketing Using the Support Vector Machine

Author

Listed:
  • Dapeng Cui

    (Ipsos Insight, North America, 111 North Canal, Suite 405, Chicago, Illinois 60606)

  • David Curry

    (College of Business Administration, University of Cincinnati, Cincinnati, Ohio 45221-0145)

Abstract

Many marketing problems require accurately predicting the outcome of a process or the future state of a system. In this paper, we investigate the ability of the support vector machine to predict outcomes in emerging environments in marketing, such as automated modeling, mass-produced models, intelligent software agents, and data mining. The support vector machine (SVM) is a semiparametric technique with origins in the machine-learning literature of computer science. Its approach to prediction differs markedly from that of standard parametric models. We explore these differences and benchmark the SVM's prediction hit-rates against those from the multinomial logit model. Because there are few applications of the SVM in marketing, we develop a framework to position it against current modeling techniques and to assess its weaknesses as well as its strengths.

Suggested Citation

  • Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
  • Handle: RePEc:inm:ormksc:v:24:y:2005:i:4:p:595-615
    DOI: 10.1287/mksc.1050.0123
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1050.0123
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1050.0123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    2. John D. Schmitz & Gordon D. Armstrong & John D. C. Little, 1990. "CoverStory—Automated News Finding in Marketing," Interfaces, INFORMS, vol. 20(6), pages 29-38, December.
    3. Paul Resnick & Christopher Avery & Richard Zeckhauser, 1999. "The Market for Evaluations," American Economic Review, American Economic Association, vol. 89(3), pages 564-584, June.
    4. Lilien, Gary L. & Rangaswamy, Arvind & van Bruggen, Gerrit H. & Wierenga, Berend, 2002. "Bridging the marketing theory-practice gap with marketing engineering," Journal of Business Research, Elsevier, vol. 55(2), pages 111-121, February.
    5. Lee G. Cooper & Giovanni Giuffrida, 2000. "Turning Datamining into a Management Science Tool: New Algorithms and Empirical Results," Management Science, INFORMS, vol. 46(2), pages 249-264, February.
    6. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    7. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    8. Magid M. Abraham & Leonard M. Lodish, 1993. "An Implemented System for Improving Promotion Productivity Using Store Scanner Data," Marketing Science, INFORMS, vol. 12(3), pages 248-269.
    9. repec:bla:jindec:v:49:y:2001:i:4:p:541-58 is not listed on IDEAS
    10. Magid M. Abraham & Leonard M. Lodish, 1987. "Promoter: An Automated Promotion Evaluation System," Marketing Science, INFORMS, vol. 6(2), pages 101-123.
    11. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    12. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    13. Michael D. Smith & Erik Brynjolfsson, 2001. "Consumer Decision-making at an Internet Shopbot: Brand Still Matters," NBER Chapters, in: E-commerce, pages 541-558, National Bureau of Economic Research, Inc.
    14. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    15. Berend Wierenga & Gerrit H. Van Bruggen & Richard Staelin, 1999. "The Success of Marketing Management Support Systems," Marketing Science, INFORMS, vol. 18(3), pages 196-207.
    16. Kahneman, Daniel, 2002. "Maps of Bounded Rationality," Nobel Prize in Economics documents 2002-4, Nobel Prize Committee.
    17. Diehl, Kristin & Kornish, Laura J & Lynch, John G, Jr, 2003. "Smart Agents: When Lower Search Costs for Quality Information Increase Price Sensitivity," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 30(1), pages 56-71, June.
    18. Gale Young & A. Householder, 1940. "Factorial invariance and significance," Psychometrika, Springer;The Psychometric Society, vol. 5(1), pages 47-56, March.
    19. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    20. Gerald Häubl & Valerie Trifts, 2000. "Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids," Marketing Science, INFORMS, vol. 19(1), pages 4-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh Divakar & Brian T. Ratchford & Venkatesh Shankar, 2005. "Practice Prize Article—: A Multichannel, Multiregion Sales Forecasting Model and Decision Support System for Consumer Packaged Goods," Marketing Science, INFORMS, vol. 24(3), pages 334-350, July.
    2. Arnold Kamis & Tziporah Stern & Daniel M. Ladik, 2010. "A flow-based model of web site intentions when users customize products in business-to-consumer electronic commerce," Information Systems Frontiers, Springer, vol. 12(2), pages 157-168, April.
    3. Jorge Silva-Risso & Irina Ionova, 2008. "—A Nested Logit Model of Product and Transaction-Type Choice for Planning Automakers' Pricing and Promotions," Marketing Science, INFORMS, vol. 27(4), pages 545-566, 07-08.
    4. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    5. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    6. Tuck Siong Chung & Roland T. Rust & Michel Wedel, 2009. "My Mobile Music: An Adaptive Personalization System for Digital Audio Players," Marketing Science, INFORMS, vol. 28(1), pages 52-68, 01-02.
    7. Rick L. Andrews & Andrew Ainslie & Imran S. Currim, 2008. "On the Recoverability of Choice Behaviors with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects," Management Science, INFORMS, vol. 54(1), pages 83-99, January.
    8. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    9. Chen, Liyun, 2009. "What do we pay for asymmetric information? The evolution of mechanisms in online markets," MPRA Paper 22506, University Library of Munich, Germany.
    10. Nishtha Langer & Chris Forman & Sunder Kekre & Baohong Sun, 2012. "Ushering Buyers into Electronic Channels: An Empirical Analysis," Information Systems Research, INFORMS, vol. 23(4), pages 1212-1231, December.
    11. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    12. John D. C. Little, 2004. "Comments on ÜModels and Managers: The Concept of a Decision CalculusÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1854-1860, December.
    13. Bucklin, Randolph E. & Sismeiro, Catarina, 2009. "Click Here for Internet Insight: Advances in Clickstream Data Analysis in Marketing," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 35-48.
    14. Jorge Silva-Risso & William V. Shearin & Irina Ionova & Alexei Khavaev & Deirdre Borrego, 2008. "Chrysler and J. D. Power: Pioneering Scientific Price Customization in the Automobile Industry," Interfaces, INFORMS, vol. 38(1), pages 26-39, February.
    15. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    16. Viswanath Venkatesh & Ritu Agarwal, 2006. "Turning Visitors into Customers: A Usability-Centric Perspective on Purchase Behavior in Electronic Channels," Management Science, INFORMS, vol. 52(3), pages 367-382, March.
    17. Jorge M. Silva-Risso & Randolph E. Bucklin & Donald G. Morrison, 1999. "A Decision Support System for Planning Manufacturers' Sales Promotion Calendars," Marketing Science, INFORMS, vol. 18(3), pages 274-300.
    18. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    19. Gavan J. Fitzsimons & Donald R. Lehmann, 2004. "Reactance to Recommendations: When Unsolicited Advice Yields Contrary Responses," Marketing Science, INFORMS, vol. 23(1), pages 82-94, September.
    20. Koehler, C.F. & Breugelmans, E. & Dellaert, B.G.C., 2010. "Consumer Acceptance of Recommendations by Interactive Decision Aids: The Joint Role of Temporal Distance and Concrete vs. Abstract Communications," ERIM Report Series Research in Management ERS-2010-041-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:24:y:2005:i:4:p:595-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.