IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v171y2021ics0167715220303242.html
   My bibliography  Save this article

A consistent estimator for skewness of partial sums of dependent data

Author

Listed:
  • Nasari, Masoud M.
  • Ould-Haye, Mohamedou

Abstract

We introduce an estimation method for the scaled skewness coefficient of the sample mean of short and long memory linear processes. This method can be extended to estimate higher moments such as Kurtosis coefficient of the sample mean. Also a general result on computing all asymptotic moments of partial sums is obtained, allowing in particular a much easier derivation of some existing central limit theorems for linear processes. The introduced skewness estimator provides a tool to empirically examine the error of the central limit theorem for long and short memory linear processes. We also show that, for both short and long memory linear processes, the skewness coefficient of the sample mean converges to zero at the same rate as in the i.i.d. case.

Suggested Citation

  • Nasari, Masoud M. & Ould-Haye, Mohamedou, 2021. "A consistent estimator for skewness of partial sums of dependent data," Statistics & Probability Letters, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:stapro:v:171:y:2021:i:c:s0167715220303242
    DOI: 10.1016/j.spl.2020.109021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220303242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.109021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    2. Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.
    3. K Abadir & W Distaso & L Giraitis, "undated". "Two estimators of the long-run variance," Discussion Papers 05/19, Department of Economics, University of York.
    4. Matteo Grigoletto & Francesco Lisi, 2009. "Looking for skewness in financial time series," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 310-323, July.
    5. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    6. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," LIDAM Reprints CORE 1594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud M. Nasari & Mohamedou Ould-Haye, 2022. "Confidence intervals with higher accuracy for short and long-memory linear processes," Statistical Papers, Springer, vol. 63(4), pages 1187-1220, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
    2. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Invariance principles for tempered fractionally integrated processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3419-3438.
    3. Farzad Sabzikar & Qiying Wang & Peter C.B. Phillips, 2018. "Asymptotic Theory for Near Integrated Process Driven by Tempered Linear Process," Cowles Foundation Discussion Papers 2131, Cowles Foundation for Research in Economics, Yale University.
    4. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    5. Jiang, Bibo & Lu, Ye & Park, Joon Y., 2020. "Testing for Stationarity at High Frequency," Journal of Econometrics, Elsevier, vol. 215(2), pages 341-374.
    6. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    7. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    8. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    9. Cousido-Rocha, Marta & de Uña-Álvarez, Jacobo & Hart, Jeffrey D., 2019. "A two-sample test for the equality of univariate marginal distributions for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    10. Ruiz Esther & Pérez Ana, 2012. "Maximally Autocorrelated Power Transformations: A Closer Look at the Properties of Stochastic Volatility Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-33, September.
    11. Christian Peretti, 2007. "Long Memory and Hysteresis," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 363-389, Springer.
    12. Lanciné Bamba & Ouagnina Hili & Abdou Kâ Diongue & Assi N’Guessan, 2021. "M-Estimate for the stationary hyperbolic GARCH models," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 303-351, December.
    13. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    14. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    15. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    16. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. A. Assaf, 2007. "Fractional integration in the equity markets of MENA region," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 709-723.
    18. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    19. Estefania Mourelle & Juan Carlos Cuestas & Luis Alberiko Gil‐alana, 2011. "Is There An Asymmetric Behaviour In African Inflation? A Non‐Linear Approach," South African Journal of Economics, Economic Society of South Africa, vol. 79(1), pages 68-90, March.
    20. Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:171:y:2021:i:c:s0167715220303242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.