IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.06093.html
   My bibliography  Save this paper

A Unified Frequency Domain Cross-Validatory Approach to HAC Standard Error Estimation

Author

Listed:
  • Zhihao Xu
  • Clifford M. Hurvich

Abstract

A unified frequency domain cross-validation (FDCV) method is proposed to obtain a heteroskedasticity and autocorrelation consistent (HAC) standard error. This method enables model/tuning parameter selection across both parametric and nonparametric spectral estimators simultaneously. The candidate class for this approach consists of restricted maximum likelihood-based (REML) autoregressive spectral estimators and lag-weights estimators with the Parzen kernel. Additionally, an efficient technique for computing the REML estimators of autoregressive models is provided. Through simulations, the reliability of the FDCV method is demonstrated, comparing favorably with popular HAC estimators such as Andrews-Monahan and Newey-West.

Suggested Citation

  • Zhihao Xu & Clifford M. Hurvich, 2021. "A Unified Frequency Domain Cross-Validatory Approach to HAC Standard Error Estimation," Papers 2108.06093, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2108.06093
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.06093
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    2. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    3. Robinson, P M, 1991. "Automatic Frequency Domain Inference on Semiparametric and Nonparametric Models," Econometrica, Econometric Society, vol. 59(5), pages 1329-1363, September.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    5. Willa W. Chen & Rohit S. Deo, 2012. "The restricted likelihood ratio test for autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 325-339, March.
    6. K Abadir & W Distaso & L Giraitis, "undated". "Two estimators of the long-run variance," Discussion Papers 05/19, Department of Economics, University of York.
    7. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    11. Robinson, P. M., 2005. "Robust covariance matrix estimation : 'HAC' estimates with long memory/antipersistence correction," LSE Research Online Documents on Economics 323, London School of Economics and Political Science, LSE Library.
    12. A. I. McLeod & Y. Zhang, 2006. "Partial autocorrelation parameterization for subset autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 599-612, July.
    13. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
    14. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
    15. Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
    16. Kaizô I. BeltraTo & Peter Bloomfield, 1987. "Determining The Bandwidth Of A Kernel Spectrum Estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(1), pages 21-38, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    2. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    4. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    5. Qunyong Wang & Na Wu, 2012. "Long-run covariance and its applications in cointegration regression," Stata Journal, StataCorp LP, vol. 12(3), pages 525-542, September.
    6. Wouter J. den Haan & Andrew T. Levin, 2000. "Robust Covariance Matrix Estimation with Data-Dependent VAR Prewhitening Order," NBER Technical Working Papers 0255, National Bureau of Economic Research, Inc.
    7. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    8. Ekaterini Panopoulou & Nikitas Pittis & Sarantis Kalyvitis, 2010. "Looking far in the past: revisiting the growth-returns nexus with non-parametric tests," Empirical Economics, Springer, vol. 38(3), pages 743-766, June.
    9. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    10. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    11. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    12. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    13. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    14. Politis, Dimitris, 2005. "Higher-order accurate, positive semi-definite estimation of large-sample covariance and spectral density matrices," University of California at San Diego, Economics Working Paper Series qt7qg2m9rz, Department of Economics, UC San Diego.
    15. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    16. Lu, Ye & Park, Joon Y., 2019. "Estimation of longrun variance of continuous time stochastic process using discrete sample," Journal of Econometrics, Elsevier, vol. 210(2), pages 236-267.
    17. Craig Burnside & Martin Eichenbaum, 1994. "Small Sample Properties of Generalized Method of Moments Based Wald Tests," NBER Technical Working Papers 0155, National Bureau of Economic Research, Inc.
    18. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    19. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    20. Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.06093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.