IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v59y2020i6d10.1007_s00181-019-01726-0.html
   My bibliography  Save this article

Assessing distributional properties of forecast errors for fan-chart modelling

Author

Listed:
  • Marián Vávra

    (Comenius University in Bratislava
    National Bank of Slovakia)

Abstract

This paper considers the problem of assessing the distributional properties (normality and symmetry) of macroeconomic forecast errors of G7 countries for the purpose of fan-chart modelling. Our results indicate that the assumption of symmetry of the marginal distribution of forecast errors is reasonable, whereas the assumption of normality is not, making symmetric prediction intervals clearly preferable.

Suggested Citation

  • Marián Vávra, 2020. "Assessing distributional properties of forecast errors for fan-chart modelling," Empirical Economics, Springer, vol. 59(6), pages 2841-2858, December.
  • Handle: RePEc:spr:empeco:v:59:y:2020:i:6:d:10.1007_s00181-019-01726-0
    DOI: 10.1007/s00181-019-01726-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01726-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01726-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zacharias Psaradakis, 2016. "Using the Bootstrap to Test for Symmetry Under Unknown Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 406-415, July.
    2. Psaradakis, Zacharias & Vávra, Marián, 2017. "A distance test of normality for a wide class of stationary processes," Econometrics and Statistics, Elsevier, vol. 2(C), pages 50-60.
    3. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
    4. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    5. Spyros Makridakis & Robert L. Winkler, 1989. "Sampling Distributions of Post‐Sample Forecasting Errors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(2), pages 331-342, June.
    6. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    7. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    8. Gill Hammond, 2012. "State of the art of inflation targeting," Handbooks, Centre for Central Banking Studies, Bank of England, edition 4, number 29, April.
    9. Zacharias Psaradakis & Marian Vavra, 2017. "Normality Tests for Dependent Data," Working and Discussion Papers WP 12/2017, Research Department, National Bank of Slovakia.
    10. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    11. Lahiri, Kajal & Teigland, Christie, 1987. "On the normality of probability distributions of inflation and GNP forecasts," International Journal of Forecasting, Elsevier, vol. 3(2), pages 269-279.
    12. Chen Yi-Ting & Lin Chang-Ching, 2008. "On the Robustness of Symmetry Tests for Stock Returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-40, May.
    13. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    14. David L. Reifschneider & Peter Tulip, 2007. "Gauging the uncertainty of the economic outlook from historical forecasting errors," Finance and Economics Discussion Series 2007-60, Board of Governors of the Federal Reserve System (U.S.).
    15. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    16. Sharipov, Olimjon Sh. & Wendler, Martin, 2013. "Normal limits, nonnormal limits, and the bootstrap for quantiles of dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1028-1035.
    17. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    18. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
    19. Zacharias Psaradakis & Marián Vávra, 2015. "A Quantile-based Test for Symmetry of Weakly Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(4), pages 587-598, July.
    20. Reifschneider, David & Tulip, Peter, 2019. "Gauging the uncertainty of the economic outlook using historical forecasting errors: The Federal Reserve’s approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1564-1582.
    21. Yong Bao, 2013. "On Sample Skewness and Kurtosis," Econometric Reviews, Taylor & Francis Journals, vol. 32(4), pages 415-448, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zacharias Psaradakis & Marián Vávra, 2017. "Normality Tests for Dependent Data: Large-Sample and Bootstrap Approaches," Birkbeck Working Papers in Economics and Finance 1706, Birkbeck, Department of Economics, Mathematics & Statistics.
    2. Psaradakis, Zacharias & Vávra, Marián, 2017. "A distance test of normality for a wide class of stationary processes," Econometrics and Statistics, Elsevier, vol. 2(C), pages 50-60.
    3. Zacharias Psaradakis & Marian Vavra, 2018. "Bootstrap Assisted Tests of Symmetry for Dependent Data," Working and Discussion Papers WP 5/2018, Research Department, National Bank of Slovakia.
    4. Zacharias Psaradakis & Marián Vávra, 2015. "A Quantile-based Test for Symmetry of Weakly Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(4), pages 587-598, July.
    5. Luke Hartigan, 2016. "Testing for Symmetry in Weakly Dependent Time Series," Discussion Papers 2016-18, School of Economics, The University of New South Wales.
    6. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    7. Matei Demetrescu & Robinson Kruse-Becher, 2021. "Is U.S. real output growth really non-normal? Testing distributional assumptions in time-varying location-scale models," CREATES Research Papers 2021-07, Department of Economics and Business Economics, Aarhus University.
    8. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    9. Tara M. Sinclair & H. O. Stekler & Warren Carnow, 2012. "A new approach for evaluating economic forecasts," Economics Bulletin, AccessEcon, vol. 32(3), pages 2332-2342.
    10. Demetrescu, Matei & Kruse, Robinson, 2015. "Testing heteroskedastic time series for normality," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113221, Verein für Socialpolitik / German Economic Association.
    11. Lena Mareen Koerber & Daisuke Nagakura & Ippei Fujiwara, 2011. "How much Asymmetry is there in Bond Returns and Exchange Rates?," Bank of Japan Working Paper Series 11-E-10, Bank of Japan.
    12. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    13. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    14. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    15. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    16. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    17. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
    18. Zacharias Psaradakis & Marián Vávra, 2022. "Using Triples to Assess Symmetry Under Weak Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1538-1551, October.
    19. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    20. Masoud M. Nasari & Mohamedou Ould-Haye, 2022. "Confidence intervals with higher accuracy for short and long-memory linear processes," Statistical Papers, Springer, vol. 63(4), pages 1187-1220, August.

    More about this item

    Keywords

    Normality; Symmetry; Forecast errors; Prediction interval; Fan-chart; Sieve bootstrap;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:59:y:2020:i:6:d:10.1007_s00181-019-01726-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.