IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i3d10.1007_s10260-023-00688-z.html
   My bibliography  Save this article

Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility

Author

Listed:
  • G. Alleva

    (Sapienza University of Rome)

  • G. Arbia

    (Catholic University of Sacred Heart)

  • P. D. Falorsi

    (Sapienza University of Rome)

  • V. Nardelli

    (University of Milan-Bicocca)

  • A. Zuliani

    (Sapienza University of Rome)

Abstract

The COVID-19 pandemic presents an unprecedented clinical and healthcare challenge for the many medical researchers who are attempting to prevent its worldwide spread. It also presents a challenge for statisticians involved in designing appropriate sampling plans to estimate the crucial parameters of the pandemic. These plans are necessary for monitoring and surveillance of the phenomenon and evaluating health policies. In this respect, we can use spatial information and aggregate data regarding the number of verified infections (either hospitalized or in compulsory quarantine) to improve the standard two-stage sampling design broadly adopted for studying human populations. We present an optimal spatial sampling design based on spatially balanced sampling techniques. We prove its relative performance analytically in comparison to other competing sampling plans, and we also study its properties through a series of Monte Carlo experiments. Considering the optimal theoretical properties of the proposed sampling plan and its feasibility, we discuss suboptimal designs that approximate well optimality and are more readily applicable.

Suggested Citation

  • G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00688-z
    DOI: 10.1007/s10260-023-00688-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00688-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00688-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    2. Augusto Cerqua & Roberta Di Stefano, 2022. "When did coronavirus arrive in Europe?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 181-195, March.
    3. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    4. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    5. Anton Grafström & Yves Tillé, 2013. "Doubly balanced spatial sampling with spreading and restitution of auxiliary totals," Environmetrics, John Wiley & Sons, Ltd., vol. 24(2), pages 120-131, March.
    6. Desislava Nedyalkova & Yves Tillé, 2008. "Optimal sampling and estimation strategies under the linear model," Biometrika, Biometrika Trust, vol. 95(3), pages 521-537.
    7. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    2. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    3. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    4. Sara Franceschi & Rosa Maria Di Biase & Agnese Marcelli & Lorenzo Fattorini, 2022. "Some Empirical Results on Nearest-Neighbour Pseudo-populations for Resampling from Spatial Populations," Stats, MDPI, vol. 5(2), pages 1-16, April.
    5. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    6. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Statistics Poland, vol. 22(2), pages 143-154, June.
    7. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    8. Bardia Panahbehagh & Raphaël Jauslin & Yves Tillé, 2024. "A general stream sampling design," Computational Statistics, Springer, vol. 39(6), pages 2899-2924, September.
    9. Alfio Marazzi & Yves Tillé, 2017. "Using past experience to optimize audit sampling design," Review of Quantitative Finance and Accounting, Springer, vol. 49(2), pages 435-462, August.
    10. Robertson, Blair & Price, Chris, 2024. "One point per cluster spatially balanced sampling," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    11. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    12. R. Benedetti & M. S. Andreano & F. Piersimoni, 2019. "Sample selection when a multivariate set of size measures is available," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 1-25, March.
    13. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    14. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    15. Cindy L. Yu & Jie Li & Michael G. Karl & Todd J. Krueger, 2020. "Obtaining a Balanced Area Sample for the Bureau of Land Management Rangeland Survey," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 250-275, June.
    16. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    17. Lorenzo Fattorini & Alberto Meriggi & Enrico Merli & Paolo Varuzza, 2020. "Sampling Strategies to Estimate Deer Density by Drive Counts," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 168-185, June.
    18. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    19. Wadoux, Alexandre M.J.-C. & Heuvelink, Gerard B.M. & de Bruin, Sytze & Brus, Dick J., 2021. "Spatial cross-validation is not the right way to evaluate map accuracy," Ecological Modelling, Elsevier, vol. 457(C).
    20. Sara Franceschi & Gianni Betti & Lorenzo Fattorini & Francesca Gagliardi & Gianni Montrone, 2022. "Balanced sampling of boxes from batches for assessing quality of fruits and vegetables in EU countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2821-2839, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00688-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.