IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v457y2021ics0304380021002489.html
   My bibliography  Save this article

Spatial cross-validation is not the right way to evaluate map accuracy

Author

Listed:
  • Wadoux, Alexandre M.J.-C.
  • Heuvelink, Gerard B.M.
  • de Bruin, Sytze
  • Brus, Dick J.

Abstract

For decades scientists have produced maps of biological, ecological and environmental variables. These studies commonly evaluate the map accuracy through cross-validation with the data used for calibrating the underlying mapping model. Recent studies, however, have argued that cross-validation statistics of most mapping studies are optimistically biased. They attribute these overoptimistic results to a supposed serious methodological flaw in standard cross-validation methods, namely that these methods ignore spatial autocorrelation in the data. They argue that spatial cross-validation should be used instead, and contend that standard cross-validation methods are inherently invalid in a geospatial context because of the autocorrelation present in most spatial data. Here we argue that these studies propagate a widespread misconception of statistical validation of maps. We explain that unbiased estimates of map accuracy indices can be obtained by probability sampling and design-based inference and illustrate this with a numerical experiment on large-scale above-ground biomass mapping. In our experiment, standard cross-validation (i.e., ignoring autocorrelation) led to smaller bias than spatial cross-validation. Standard cross-validation was deficient in case of a strongly clustered dataset that had large differences in sampling density, but less so than spatial cross-validation. We conclude that spatial cross-validation methods have no theoretical underpinning and should not be used for assessing map accuracy, while standard cross-validation is deficient in case of clustered data. Model-free, design-unbiased and valid accuracy assessment is achieved with probability sampling and design-based inference. It is valid without the need to explicitly incorporate or adjust for spatial autocorrelation and perfectly suited for the validation of large scale biological, ecological and environmental maps.

Suggested Citation

  • Wadoux, Alexandre M.J.-C. & Heuvelink, Gerard B.M. & de Bruin, Sytze & Brus, Dick J., 2021. "Spatial cross-validation is not the right way to evaluate map accuracy," Ecological Modelling, Elsevier, vol. 457(C).
  • Handle: RePEc:eee:ecomod:v:457:y:2021:i:c:s0304380021002489
    DOI: 10.1016/j.ecolmodel.2021.109692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    2. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Author Correction: Global land change from 1982 to 2016," Nature, Nature, vol. 563(7732), pages 26-26, November.
    3. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    4. Meyer, Hanna & Reudenbach, Christoph & Wöllauer, Stephan & Nauss, Thomas, 2019. "Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction," Ecological Modelling, Elsevier, vol. 411(C).
    5. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    6. Pierre Ploton & Frédéric Mortier & Maxime Réjou-Méchain & Nicolas Barbier & Nicolas Picard & Vivien Rossi & Carsten Dormann & Guillaume Cornu & Gaëlle Viennois & Nicolas Bayol & Alexei Lyapustin & Syl, 2020. "Spatial validation reveals poor predictive performance of large-scale ecological mapping models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    8. Johan Hoogen & Stefan Geisen & Devin Routh & Howard Ferris & Walter Traunspurger & David A. Wardle & Ron G. M. Goede & Byron J. Adams & Wasim Ahmad & Walter S. Andriuzzi & Richard D. Bardgett & Michae, 2019. "Soil nematode abundance and functional group composition at a global scale," Nature, Nature, vol. 572(7768), pages 194-198, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanna Meyer & Edzer Pebesma, 2022. "Machine learning-based global maps of ecological variables and the challenge of assessing them," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Fuat Kaya & Calogero Schillaci & Ali Keshavarzi & Levent Başayiğit, 2022. "Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain," Land, MDPI, vol. 11(12), pages 1-21, November.
    3. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manan Bhan & Simone Gingrich & Sarah Matej & Steffen Fritz & Karl-Heinz Erb, 2021. "Land Use Increases the Correlation between Tree Cover and Biomass Carbon Stocks in the Global Tropics," Land, MDPI, vol. 10(11), pages 1-15, November.
    2. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    3. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    4. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    5. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    6. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    7. Jing Duan & Pu Shi & Yuanyuan Yang & Dongyan Wang, 2024. "Spatiotemporal Change Analysis and Multi-Scenario Modeling of Ecosystem Service Values: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration, China," Land, MDPI, vol. 13(11), pages 1-21, October.
    8. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.
    9. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    10. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    11. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    12. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    13. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    14. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    15. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    17. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    18. Xiaoyu Niu & Yunfeng Hu & Zhongying Lei & Huimin Yan & Junzhi Ye & Hao Wang, 2022. "Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020," Land, MDPI, vol. 11(6), pages 1-19, June.
    19. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    20. Yuji Hara & Chizuko Hirai & Yuki Sampei, 2022. "Mapping Uncounted Anthropogenic Fill Flows: Environmental Impact and Mitigation," Land, MDPI, vol. 11(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:457:y:2021:i:c:s0304380021002489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.