IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v56y2022i4d10.1007_s11135-021-01247-y.html
   My bibliography  Save this article

Balanced sampling of boxes from batches for assessing quality of fruits and vegetables in EU countries

Author

Listed:
  • Sara Franceschi

    (University of Siena)

  • Gianni Betti

    (University of Siena)

  • Lorenzo Fattorini

    (University of Siena)

  • Francesca Gagliardi

    (University of Siena)

  • Gianni Montrone

    (Quality Assurance, Conad del Tirreno)

Abstract

The best evaluation for the proportion of defective units in a batch of fruits and vegetables can be achieved by an exhaustive checking of all the boxes in the batch, that is prohibitive to perform in most cases. Usually, only a sample of boxes is checked. In EU countries, EU regulations establish to estimate the proportion of defective units in a batch by the proportion of defective units in the sample, without giving any rule for selecting boxes. Therefore, results are highly dependent on the subjective choice of boxes. In the present study, an objective design-based approach is considered to select boxes from batches, adopting balanced spatial schemes with equal inclusion probabilities. The schemes are able to select samples of boxes evenly spread throughout the batch also ensuring good statistical properties for the proportion of defective units in the sample as estimator of the proportion of defective units in the batch. The performance of these strategies is evaluated by means of a simulation study performed on real and artificial batches of apples, peppers and strawberries. A case study is considered to estimate the proportion of defective units in a batch of courgettes stored in a distribution center of a supermarket chain in Central Italy.

Suggested Citation

  • Sara Franceschi & Gianni Betti & Lorenzo Fattorini & Francesca Gagliardi & Gianni Montrone, 2022. "Balanced sampling of boxes from batches for assessing quality of fruits and vegetables in EU countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2821-2839, August.
  • Handle: RePEc:spr:qualqt:v:56:y:2022:i:4:d:10.1007_s11135-021-01247-y
    DOI: 10.1007/s11135-021-01247-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-021-01247-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-021-01247-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    2. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    2. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    3. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    4. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    5. Cindy L. Yu & Jie Li & Michael G. Karl & Todd J. Krueger, 2020. "Obtaining a Balanced Area Sample for the Bureau of Land Management Rangeland Survey," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 250-275, June.
    6. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    7. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    8. Lorenzo Fattorini & Alberto Meriggi & Enrico Merli & Paolo Varuzza, 2020. "Sampling Strategies to Estimate Deer Density by Drive Counts," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 168-185, June.
    9. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    10. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    11. Wadoux, Alexandre M.J.-C. & Heuvelink, Gerard B.M. & de Bruin, Sytze & Brus, Dick J., 2021. "Spatial cross-validation is not the right way to evaluate map accuracy," Ecological Modelling, Elsevier, vol. 457(C).
    12. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    13. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.
    14. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    15. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    16. Pommerening, Arne & Szmyt, Janusz & Zhang, Gongqiao, 2020. "A new nearest-neighbour index for monitoring spatial size diversity: The hyperbolic tangent index," Ecological Modelling, Elsevier, vol. 435(C).
    17. Louis‐Paul Rivest & Serigne Abib Gaye, 2023. "Using Survey Sampling Algorithms For Exact Inference in Logistic Regression," International Statistical Review, International Statistical Institute, vol. 91(1), pages 18-34, April.
    18. Lennart Bondesson, 2010. "Conditional and Restricted Pareto Sampling: Two New Methods for Unequal Probability Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 514-530, September.
    19. Tillé, Yves & Favre, Anne-Catherine, 2005. "Optimal allocation in balanced sampling," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 31-37, August.
    20. Yves Tillé, 2016. "The legacy of Corrado Gini in survey sampling and inequality theory," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 167-176, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:56:y:2022:i:4:d:10.1007_s11135-021-01247-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.