IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v28y2019i1d10.1007_s10260-018-00433-x.html
   My bibliography  Save this article

Sample selection when a multivariate set of size measures is available

Author

Listed:
  • R. Benedetti

    (“G. d’Annunzio” University)

  • M. S. Andreano

    (Universitas Mercatorum)

  • F. Piersimoni

    (Istat, Directorate for Methodology and Statistical Process Design)

Abstract

The design of a $$\pi $$ π ps random sample from a finite population when multivariate auxiliary variables are available deals with two main issues: the definition of a selection probability for each unit in the population as a function of the whole set of the auxiliary variables and the determination of the sample size required to achieve a fixed precision level for each auxiliary variable. These precisions are usually expressed as a set of upper limits on the coefficients of variation of the estimates. A strategy, based on a convex linear combination of the univariate selection probabilities, is suggested to approach jointly these issues. The weights of the linear combination are evaluated in such a way that the sample sizes necessary to reach each constrained error level are the same. The procedure is applied to design a $$\pi $$ π ps sampling scheme for the monthly slaughtering survey conducted by the Italian Institute of Statistics (Istat). The results clearly show that the use of this strategy implies an appreciable gain in the efficiency of the design. The selection probabilities returned by this proposal do not involve excessive and unnecessary efforts on some auxiliary variables, disadvantaging other variables that for this reason will have too high errors. On the contrary, this may occur when simple summary statistics are used (average, maximum, etc.) to reduce the multivariate problem to a known univariate situation. For a given set of precision levels, our procedure achieves a sample size which is much lower than the one used by Istat and obtained through a multivariate stratification of the frame.

Suggested Citation

  • R. Benedetti & M. S. Andreano & F. Piersimoni, 2019. "Sample selection when a multivariate set of size measures is available," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 1-25, March.
  • Handle: RePEc:spr:stmapp:v:28:y:2019:i:1:d:10.1007_s10260-018-00433-x
    DOI: 10.1007/s10260-018-00433-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-018-00433-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-018-00433-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kott, Phillip S. & Bailey, Jeffrey T., 2000. "The Theory and Practice of Maximal Brewer Selection with Poisson PRN Sampling," NASS Research Reports 234380, United States Department of Agriculture, National Agricultural Statistics Service.
    2. Tillé, Yves & Favre, Anne-Catherine, 2005. "Optimal allocation in balanced sampling," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 31-37, August.
    3. Sophie Baillargeon & Louis‐Paul Rivest, 2009. "A General Algorithm for Univariate Stratification," International Statistical Review, International Statistical Institute, vol. 77(3), pages 331-344, December.
    4. Hidiroglou, M A & Srinath, K P, 1993. "Problems Associated with Designing Subannual Business Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 397-405, October.
    5. Desislava Nedyalkova & Yves Tillé, 2008. "Optimal sampling and estimation strategies under the linear model," Biometrika, Biometrika Trust, vol. 95(3), pages 521-537.
    6. Guillaume Chauvet & Yves Tillé, 2006. "A fast algorithm for balanced sampling," Computational Statistics, Springer, vol. 21(1), pages 53-62, March.
    7. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    8. Wayne A. Fuller, 2009. "Some design properties of a rejective sampling procedure," Biometrika, Biometrika Trust, vol. 96(4), pages 933-944.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mangirdas Morkunas & Elzė Rudienė & Lukas Giriūnas & Laura Daučiūnienė, 2020. "Assessment of Factors Causing Bias in Marketing- Related Publications," Publications, MDPI, vol. 8(4), pages 1-16, October.
    2. Elena Almaraz Luengo & Javier Román Villaizán, 2023. "Cryptographically Secured Pseudo-Random Number Generators: Analysis and Testing with NIST Statistical Test Suite," Mathematics, MDPI, vol. 11(23), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    2. Hasler, Caren & Tillé, Yves, 2014. "Fast balanced sampling for highly stratified population," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 81-94.
    3. Hervé Cardot & Camelia Goga & Pauline Lardin, 2014. "Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 516-534, June.
    4. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    5. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    6. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    7. Alfio Marazzi & Yves Tillé, 2017. "Using past experience to optimize audit sampling design," Review of Quantitative Finance and Accounting, Springer, vol. 49(2), pages 435-462, August.
    8. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    9. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    10. Chauvet, Guillaume & Do Paco, Wilfried, 2018. "Exact balanced random imputation for sample survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 1-16.
    11. Cindy L. Yu & Jie Li & Michael G. Karl & Todd J. Krueger, 2020. "Obtaining a Balanced Area Sample for the Bureau of Land Management Rangeland Survey," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 250-275, June.
    12. Roberto Benedetti & Maria Michela Dickson & Giuseppe Espa & Francesco Pantalone & Federica Piersimoni, 2022. "A simulated annealing-based algorithm for selecting balanced samples," Computational Statistics, Springer, vol. 37(1), pages 491-505, March.
    13. Kaeding, Matthias, 2016. "Fast, approximate MCMC for Bayesian analysis of large data sets: A design based approach," Ruhr Economic Papers 660, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Donatien Tafin Djoko & Yves Till�, 2015. "Selection of balanced portfolios to track the main properties of a large market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 359-370, February.
    15. Leuenberger, Michael & Eustache, Esther & Jauslin, Raphaël & Tillé, Yves, 2022. "Balancing a sample almost perfectly," Statistics & Probability Letters, Elsevier, vol. 180(C).
    16. Y. G. Berger & O. De La Riva Torres, 2016. "Empirical likelihood confidence intervals for complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 319-341, March.
    17. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    18. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    19. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    20. Louis‐Paul Rivest & Serigne Abib Gaye, 2023. "Using Survey Sampling Algorithms For Exact Inference in Logistic Regression," International Statistical Review, International Statistical Institute, vol. 91(1), pages 18-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:28:y:2019:i:1:d:10.1007_s10260-018-00433-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.