Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models
Author
Abstract
Suggested Citation
DOI: 10.1080/10485250802504096
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Akritas M. G & Van Keilegom I., 2001. "ANCOVA Methods for Heteroscedastic Nonparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 220-232, March.
- L. Galtchouk & S. Pergamenshchikov, 2006. "Asymptotically Efficient Sequential Kernel Estimates of the Drift Coefficient in Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 1-16, May.
- Rohde Angelika, 2004. "On the asymptotic equivalence and rate of convergence of nonparametric regression and Gaussian white noise," Statistics & Risk Modeling, De Gruyter, vol. 22(3), pages 235-243, March.
- D. Fourdrinier & S. Pergamenshchikov, 2007. "Improved Model Selection Method for a Regression Function with Dependent Noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 435-464, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
- Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
- Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
- Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
- Liyun Su & Yanyong Zhao & Tianshun Yan & Fenglan Li, 2012. "Local Polynomial Estimation of Heteroscedasticity in a Multivariate Linear Regression Model and Its Applications in Economics," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
- E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
- Li Cai & Lijian Yang, 2015. "A smooth simultaneous confidence band for conditional variance function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 632-655, September.
- Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
- Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
- Vlad Stefan Barbu & Slim Beltaief & Serguei Pergamenchtchikov, 2022. "Adaptive efficient estimation for generalized semi-Markov big data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 925-955, October.
- Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
- Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
- Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
- Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
- Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.
- Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:1:p:1-18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.