IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i5d10.1007_s10463-019-00726-2.html
   My bibliography  Save this article

Model selection for the robust efficient signal processing observed with small Lévy noise

Author

Listed:
  • Slim Beltaief

    (Université de Rouen Normandie)

  • Oleg Chernoyarov

    (National Research University “Moscow Power Engineering Institute”)

  • Serguei Pergamenchtchikov

    (Université de Rouen Normandie)

Abstract

We develop a new model selection method for an adaptive robust efficient nonparametric signal estimation observed with impulse noise which is defined by a general non-Gaussian Lévy process. On the basis of the developed method, we construct estimation procedures which are analyzed in two settings: in non-asymptotic and in asymptotic ones. For the first time for such models, we show non-asymptotic sharp oracle inequalities for quadratic and robust risks, i.e., we show that the constructed procedures are optimal in the sense of sharp oracle inequalities. Next, by making use of the obtained oracle inequalities, we provide an asymptotic efficiency property for the developed estimation methods in an adaptive setting when the signal/noise ratio goes to infinity. We apply the developed model selection methods for the signal number detection problem in multi-path information transmission.

Suggested Citation

  • Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:5:d:10.1007_s10463-019-00726-2
    DOI: 10.1007/s10463-019-00726-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00726-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00726-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.
    2. D. Fourdrinier & S. Pergamenshchikov, 2007. "Improved Model Selection Method for a Regression Function with Dependent Noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 435-464, September.
    3. Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.
    4. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vlad Stefan Barbu & Slim Beltaief & Serguei Pergamenchtchikov, 2022. "Adaptive efficient estimation for generalized semi-Markov big data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 925-955, October.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Povzun, 2022. "Efficient estimation methods for non-Gaussian regression models in continuous time," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 113-142, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    3. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    4. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    5. Liyun Su & Yanyong Zhao & Tianshun Yan & Fenglan Li, 2012. "Local Polynomial Estimation of Heteroscedasticity in a Multivariate Linear Regression Model and Its Applications in Economics," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    6. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Povzun, 2022. "Efficient estimation methods for non-Gaussian regression models in continuous time," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 113-142, February.
    7. J.-Y. Brua, 2009. "Adaptive estimators for nonparametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(8), pages 991-1002.
    8. Reinhard Höpfner, 2021. "Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 35-59, April.
    9. Vlad Stefan Barbu & Slim Beltaief & Serguei Pergamenchtchikov, 2022. "Adaptive efficient estimation for generalized semi-Markov big data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 925-955, October.
    10. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    11. L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.
    12. Peng, Jingfu, 2023. "Adaptive and efficient estimation in the Gaussian sequence model," Statistics & Probability Letters, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:5:d:10.1007_s10463-019-00726-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.