IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i8p852-860.html
   My bibliography  Save this article

Asymptotically efficient estimates for nonparametric regression models

Author

Listed:
  • Galtchouk, L.
  • Pergamenshchikov, S.

Abstract

The paper deals with estimating problem of regression function at a given state point in nonparametric regression models with Gaussian noises and with non-Gaussian noises having unknown distribution. An asymptotically efficient kernel estimator is constructed for a minimax risk.

Suggested Citation

  • Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:8:p:852-860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00402-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Galtchouk & S. Pergamenshchikov, 2006. "Asymptotically Efficient Sequential Kernel Estimates of the Drift Coefficient in Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 1-16, May.
    2. E. Belitser, 2000. "Local minimax pointwise estimation of a multivariate density," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 351-365, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    2. Peng, Jingfu, 2023. "Adaptive and efficient estimation in the Gaussian sequence model," Statistics & Probability Letters, Elsevier, vol. 195(C).
    3. Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
    4. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    5. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    6. J.-Y. Brua, 2009. "Adaptive estimators for nonparametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(8), pages 991-1002.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    2. L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.
    3. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
    4. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    5. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:8:p:852-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.