Improved estimation in a non-Gaussian parametric regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s11203-013-9075-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fourdrinier, Dominique & Strawderman, William E., 1996. "A Paradox Concerning Shrinkage Estimators: Should a Known Scale Parameter Be Replaced by an Estimated Value in the Shrinkage Factor?," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 109-140, November.
- Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
- D. Fourdrinier & S. Pergamenshchikov, 2007. "Improved Model Selection Method for a Regression Function with Dependent Noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 435-464, September.
- Fourdrinier, Dominique & Strawderman, William E. & Wells, Martin T., 2003. "Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 24-39, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
- Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
- Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
- Reinhard Höpfner, 2021. "Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 35-59, April.
- Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Povzun, 2022. "Efficient estimation methods for non-Gaussian regression models in continuous time," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 113-142, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
- Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
- Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
- Dominique Fourdrinier & William Strawderman, 2015. "Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 461-484, May.
- Dominique Fourdrinier & Othmane Kortbi & William Strawderman, 2014. "Generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with residual vector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 285-296, February.
- Fourdrinier, Dominique & Strawderman, William E., 2016. "Stokes’ theorem, Stein’s identity and completeness," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 224-231.
- Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
- William E. Strawderman & Andrew L. Rukhin, 2010. "Simultaneous estimation and reduction of nonconformity in interlaboratory studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 219-234, March.
- Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019.
"Optimal shrinkage estimator for high-dimensional mean vector,"
Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
- Taras Bodnar & Ostap Okhrin & Nestor Parolya, 2016. "Optimal Shrinkage Estimator for High-Dimensional Mean Vector," Papers 1610.09292, arXiv.org, revised Jul 2018.
- Canu, Stéphane & Fourdrinier, Dominique, 2017. "Unbiased risk estimates for matrix estimation in the elliptical case," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 60-72.
- Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
- Vlad Stefan Barbu & Slim Beltaief & Sergey Pergamenshchikov, 2019. "Robust adaptive efficient estimation for semi-Markov nonparametric regression models," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 187-231, July.
- Wang, Cheng & Tong, Tiejun & Cao, Longbing & Miao, Baiqi, 2014. "Non-parametric shrinkage mean estimation for quadratic loss functions with unknown covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 222-232.
- Wells, Martin T. & Zhou, Gongfu, 2008. "Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2208-2220, November.
- L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.
- Fourdrinier, Dominique & Strawderman, William, 2014. "On the non existence of unbiased estimators of risk for spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 6-13.
- Aurélie Boisbunon & Stéphane Canu & Dominique Fourdrinier & William Strawderman & Martin T. Wells, 2014. "Akaike's Information Criterion, C p and Estimators of Loss for Elliptically Symmetric Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 422-439, December.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Jurečková Jana & Sen P. K., 2006. "Robust multivariate location estimation, admissibility, and shrinkage phenomenon," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 273-290, December.
- Dominique Fourdrinier & William Strawderman & Martin Wells, 2006. "Estimation of a Location Parameter with Restrictions or “vague information” for Spherically Symmetric Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 73-92, March.
More about this item
Keywords
Non-Gaussian parametric regression; Improved estimates; Pulse noise; Ornstein–Uhlenbeck process; Quadratic risk; Autoregressive noise; 62H12; 62M10;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:16:y:2013:i:1:p:15-28. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.