A novel hybrid paper recommendation system using deep learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-022-04420-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hongbin Wang & Jingzhen Ye & Zhengtao Yu & Jian Wang & Cunli Mao, 2020. "Unsupervised Keyword Extraction Methods Based on a Word Graph Network," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 11(2), pages 68-79, April.
- Hanwen Liu & Huaizhen Kou & Chao Yan & Lianyong Qi, 2020. "Keywords-Driven and Popularity-Aware Paper Recommendation Based on Undirected Paper Citation Graph," Complexity, Hindawi, vol. 2020, pages 1-15, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chi Jiang & Xiao Ma & Jiangfeng Zeng & Yin Zhang & Tingting Yang & Qiumiao Deng, 2023. "TAPRec: time-aware paper recommendation via the modeling of researchers’ dynamic preferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3453-3471, June.
- Mohammed Azmi Al-Betar & Ammar Kamal Abasi & Ghazi Al-Naymat & Kamran Arshad & Sharif Naser Makhadmeh, 2023. "Optimization of scientific publications clustering with ensemble approach for topic extraction," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2819-2877, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chi Jiang & Xiao Ma & Jiangfeng Zeng & Yin Zhang & Tingting Yang & Qiumiao Deng, 2023. "TAPRec: time-aware paper recommendation via the modeling of researchers’ dynamic preferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3453-3471, June.
- Tingting Zhang & Baozhen Lee & Qinghua Zhu & Xi Han & Ke Chen, 2023. "Document keyword extraction based on semantic hierarchical graph model," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2623-2647, May.
More about this item
Keywords
Document similarity; Keyword extraction; Research paper recommendation; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:7:d:10.1007_s11192-022-04420-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.