IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i8d10.1007_s11192-021-04026-6.html
   My bibliography  Save this article

Prediction and application of article potential citations based on nonlinear citation-forecasting combined model

Author

Listed:
  • Kehan Wang

    (Zhengzhou University)

  • Wenxuan Shi

    (Zhengzhou University)

  • Junsong Bai

    (Southern Medical University)

  • Xiaoping Zhao

    (University of California. Irvine)

  • Liying Zhang

    (Zhengzhou University)

Abstract

As the number of academic articles rapidly increases, a reasonable evaluation method for the articles is highly required in the current academic research. Meanwhile, a faster access to the high-quality academic articles for the researchers is also of critical significance. This paper first improves the AVG model and presents a new Nonlinear Citation-Forecasting Combined Model (NCFCM) based on a neural network to predict the potential increase of citation counts. Then, the NCFCM is used to analyze and rank the academic articles in online databases. The results of NCFCM model are compared to the results from other existing methods. Empirical analysis and comparisons demonstrate that the NCFCM model is of high accuracy and robustness in forecasting potential citation counts and ranking academic articles. Ranking academic articles according to the potentional citation counts can help researchers retrieve the desired articles efficiently in a short time.

Suggested Citation

  • Kehan Wang & Wenxuan Shi & Junsong Bai & Xiaoping Zhao & Liying Zhang, 2021. "Prediction and application of article potential citations based on nonlinear citation-forecasting combined model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6533-6550, August.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:8:d:10.1007_s11192-021-04026-6
    DOI: 10.1007/s11192-021-04026-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04026-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04026-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Xuanyu & Chen, Yan & Ray Liu, K.J., 2016. "A data analytic approach to quantifying scientific impact," Journal of Informetrics, Elsevier, vol. 10(2), pages 471-484.
    2. Henk F. Moed & Lisa Colledge & Jan Reedijk & Felix Moya-Anegon & Vicente Guerrero-Bote & Andrew Plume & Mayur Amin, 2012. "Citation-based metrics are appropriate tools in journal assessment provided that they are accurate and used in an informed way," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 367-376, August.
    3. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    4. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    5. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    6. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    7. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    8. Jean-Francois Molinari & Alain Molinari, 2008. "A new methodology for ranking scientific institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(1), pages 163-174, April.
    9. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    10. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
    11. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    12. Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
    13. Kolidakis, Stylianos & Botzoris, George & Profillidis, Vassilios & Lemonakis, Panagiotis, 2019. "Road traffic forecasting — A hybrid approach combining Artificial Neural Network with Singular Spectrum Analysis," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 159-171.
    14. Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
    15. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    16. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    17. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Houcemeddine Turki & Mohamed Ali Hadj Taieb & Mohamed Ben Aouicha, 2022. "Awakening sleeping beauties during the COVID-19 pandemic influences the citation impact of their references," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6047-6050, October.
    2. Fang Zhang & Shengli Wu, 2024. "Predicting citation impact of academic papers across research areas using multiple models and early citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4137-4166, July.
    3. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Zhang & Shengli Wu, 2024. "Predicting citation impact of academic papers across research areas using multiple models and early citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4137-4166, July.
    2. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    3. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2019. "A new parameter for (normalized) evaluation of H-index: countries as a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1065-1078, March.
    4. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    5. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    6. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    7. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    8. Tóth, István & Lázár, Zsolt I. & Varga, Levente & Járai-Szabó, Ferenc & Papp, István & Florian, Răzvan V. & Ercsey-Ravasz, Mária, 2021. "Mitigating ageing bias in article level metrics using citation network analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    9. Maziar Montazerian & Edgar Dutra Zanotto & Hellmut Eckert, 2020. "Prolificacy and visibility versus reputation in the hard sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 207-221, April.
    10. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
    11. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
    12. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    13. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    14. Siying Li & Huawei Shen & Peng Bao & Xueqi Cheng, 2021. "$$h_u$$ h u -index: a unified index to quantify individuals across disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3209-3226, April.
    15. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.
    16. Wang, Xing & Zhang, Zhihui, 2020. "Improving the reliability of short-term citation impact indicators by taking into account the correlation between short- and long-term citation impact," Journal of Informetrics, Elsevier, vol. 14(2).
    17. Zhiya Zuo & Kang Zhao, 2021. "Understanding and predicting future research impact at different career stages—A social network perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 454-472, April.
    18. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    19. Yubing Nie & Yifan Zhu & Qika Lin & Sifan Zhang & Pengfei Shi & Zhendong Niu, 2019. "Academic rising star prediction via scholar’s evaluation model and machine learning techniques," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 461-476, August.
    20. Cristina López-Duarte & Marta M. Vidal-Suárez & Belén González-Díaz, 2019. "Cross-national distance and international business: an analysis of the most influential recent models," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 173-208, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:8:d:10.1007_s11192-021-04026-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.