IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v13y2019i1p407-418.html
   My bibliography  Save this article

Predicting the citations of scholarly paper

Author

Listed:
  • Bai, Xiaomei
  • Zhang, Fuli
  • Lee, Ivan

Abstract

Citation prediction of scholarly papers is of great significance in guiding funding allocations, recruitment decisions, and rewards. However, little is known about how citation patterns evolve over time. By exploring the inherent involution property in scholarly paper citation, we introduce the Paper Potential Index (PPI) model based on four factors: inherent quality of scholarly paper, scholarly paper impact decaying over time, early citations, and early citers’ impact. In addition, by analyzing factors that drive citation growth, we propose a multi-feature model for impact prediction. Experimental results demonstrate that the two models improve the accuracy in predicting scholarly paper citations. Compared to the multi-feature model, the PPI model yields superior predictive performance in terms of range-normalized RMSE. The PPI model better interprets the changes in citation, without the need to adjust parameters. Compared to the PPI model, the multi-feature model performs better prediction in terms of Mean Absolute Percentage Error and Accuracy; however, their predictive performance is more dependent on the parameter adjustment.

Suggested Citation

  • Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
  • Handle: RePEc:eee:infome:v:13:y:2019:i:1:p:407-418
    DOI: 10.1016/j.joi.2019.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157718301767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2019.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Xuanyu & Chen, Yan & Ray Liu, K.J., 2016. "A data analytic approach to quantifying scientific impact," Journal of Informetrics, Elsevier, vol. 10(2), pages 471-484.
    2. Wang, Mingyang & Yu, Guang & Yu, Daren, 2008. "Measuring the preferential attachment mechanism in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4692-4698.
    3. Babak Sohrabi & Hamideh Iraj, 2017. "The effect of keyword repetition in abstract and keyword frequency per journal in predicting citation counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 243-251, January.
    4. Xiaomei Bai & Feng Xia & Ivan Lee & Jun Zhang & Zhaolong Ning, 2016. "Identifying Anomalous Citations for Objective Evaluation of Scholarly Article Impact," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-15, September.
    5. Panagopoulos, George & Tsatsaronis, George & Varlamis, Iraklis, 2017. "Detecting rising stars in dynamic collaborative networks," Journal of Informetrics, Elsevier, vol. 11(1), pages 198-222.
    6. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    7. Jun Zhang & Zhaolong Ning & Xiaomei Bai & Xiangjie Kong & Jinmeng Zhou & Feng Xia, 2017. "Exploring time factors in measuring the scientific impact of scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1301-1321, September.
    8. Mojisola Erdt & Aarthy Nagarajan & Sei-Ching Joanna Sin & Yin-Leng Theng, 2016. "Altmetrics: an analysis of the state-of-the-art in measuring research impact on social media," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1117-1166, November.
    9. Bornmann, Lutz & Schier, Hermann & Marx, Werner & Daniel, Hans-Dieter, 2012. "What factors determine citation counts of publications in chemistry besides their quality?," Journal of Informetrics, Elsevier, vol. 6(1), pages 11-18.
    10. Nick Haslam & Lauren Ban & Leah Kaufmann & Stephen Loughnan & Kim Peters & Jennifer Whelan & Sam Wilson, 2008. "What makes an article influential? Predicting impact in social and personality psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 169-185, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    2. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    3. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    4. Sepideh Fahimifar & Khadijeh Mousavi & Fatemeh Mozaffari & Marcel Ausloos, 2023. "Identification of the most important external features of highly cited scholarly papers through 3 (i.e., Ridge, Lasso, and Boruta) feature selection data mining methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3685-3712, August.
    5. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    6. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    7. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    8. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    9. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    10. Yubing Nie & Yifan Zhu & Qika Lin & Sifan Zhang & Pengfei Shi & Zhendong Niu, 2019. "Academic rising star prediction via scholar’s evaluation model and machine learning techniques," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 461-476, August.
    11. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    12. Fang Zhang & Shengli Wu, 2024. "Predicting citation impact of academic papers across research areas using multiple models and early citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4137-4166, July.
    13. Jun Zhang & Yan Hu & Zhaolong Ning & Amr Tolba & Elsayed Elashkar & Feng Xia, 2018. "AIRank: Author Impact Ranking through Positions in Collaboration Networks," Complexity, Hindawi, vol. 2018, pages 1-16, June.
    14. Shaibu Mohammed & Anthony Morgan & Emmanuel Nyantakyi, 2020. "On the influence of uncited publications on a researcher’s h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1791-1799, March.
    15. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    16. Siluo Yang & Xin Xing & Dietmar Wolfram, 2018. "Difference in the impact of open-access papers published by China and the USA," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1017-1037, May.
    17. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    18. Feiheng Luo & Aixin Sun & Mojisola Erdt & Aravind Sesagiri Raamkumar & Yin-Leng Theng, 2018. "Exploring prestigious citations sourced from top universities in bibliometrics and altmetrics: a case study in the computer science discipline," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 1-17, January.
    19. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    20. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:13:y:2019:i:1:p:407-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.