IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i4d10.1007_s11192-021-03879-1.html
   My bibliography  Save this article

$$h_u$$ h u -index: a unified index to quantify individuals across disciplines

Author

Listed:
  • Siying Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huawei Shen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peng Bao

    (Beijing Jiaotong University)

  • Xueqi Cheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Nowadays scientific evaluation is becoming increasingly important and necessary in many cases, such as faculty hiring, funding and promotion. Among existing evaluation metrics for individual performance, h-index is the most famous indicator and achieves a prominent role since its publication. However, h-index is inapplicable to comparing individuals from different scientific disciplines, primarily because it cannot handle the huge difference in collaboration habits and citation practices across disciplines. Such a shortcoming of h-index is rooted in its arbitrary definition, comparing two quantities with quite different scales, i.e., citation count for scientific impact and publication count for productivity. To combat this problem, we propose a new evaluation measure, $$h_u$$ h u -index, which unifies citation count and publication count into the same scale. We theoretically analyze the relationship between $$h_u$$ h u -index, h-index and other variants of h-index. We also study the behavior of $$h_u$$ h u -index in empirical cases and researcher ranking tasks. Experimental results demonstrate that $$h_u$$ h u -index has superior performance than h-index and achieves a better comparison of individuals across disciplines.

Suggested Citation

  • Siying Li & Huawei Shen & Peng Bao & Xueqi Cheng, 2021. "$$h_u$$ h u -index: a unified index to quantify individuals across disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3209-3226, April.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-021-03879-1
    DOI: 10.1007/s11192-021-03879-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03879-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03879-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    2. J. E. Hirsch, 2010. "An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 741-754, December.
    3. Lutz Bornmann & Rüdiger Mutz & Hans‐Dieter Daniel, 2008. "Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(5), pages 830-837, March.
    4. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    5. John Antonakis & Rafael Lalive, 2008. "Quantifying Scholarly Impact: IQp Versus the Hirsch h," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(6), pages 956-969, April.
    6. Serge Galam, 2011. "Tailor based allocations for multiple authorship: a fractional gh-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 365-379, October.
    7. Pablo D. Batista & Mônica G. Campiteli & Osame Kinouchi, 2006. "Is it possible to compare researchers with different scientific interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(1), pages 179-189, July.
    8. van Eck, Nees Jan & Waltman, Ludo, 2008. "Generalizing the h- and g-indices," Journal of Informetrics, Elsevier, vol. 2(4), pages 263-271.
    9. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    10. Chun-Ting Zhang, 2009. "The e-Index, Complementing the h-Index for Excess Citations," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-4, May.
    11. Hao Wang & Hua-Wei Shen & Xue-Qi Cheng, 2016. "Scientific credit diffusion: Researcher level or paper level?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 827-837, November.
    12. Kaur, Jasleen & Radicchi, Filippo & Menczer, Filippo, 2013. "Universality of scholarly impact metrics," Journal of Informetrics, Elsevier, vol. 7(4), pages 924-932.
    13. van Eck, N.J.P. & Waltman, L., 2008. "Generalizing the h- and g-indices," ERIM Report Series Research in Management ERS-2008-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Waltman, Ludo & van Eck, Nees Jan, 2015. "Field-normalized citation impact indicators and the choice of an appropriate counting method," Journal of Informetrics, Elsevier, vol. 9(4), pages 872-894.
    15. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    16. Teja Tscharntke & Michael E Hochberg & Tatyana A Rand & Vincent H Resh & Jochen Krauss, 2007. "Author Sequence and Credit for Contributions in Multiauthored Publications," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-2, January.
    17. Leo Egghe, 2008. "Mathematical theory of the h‐ and g‐index in case of fractional counting of authorship," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(10), pages 1608-1616, August.
    18. Bornmann, Lutz & Osório, António, 2019. "The value and credits of n-authors publications," Journal of Informetrics, Elsevier, vol. 13(2), pages 540-554.
    19. Peng Bao & Chengxiang Zhai, 2017. "Dynamic credit allocation in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 595-606, July.
    20. Schreiber, Michael, 2008. "A modification of the h-index: The hm-index accounts for multi-authored manuscripts," Journal of Informetrics, Elsevier, vol. 2(3), pages 211-216.
    21. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    2. Żogała-Siudem, Barbara & Cena, Anna & Siudem, Grzegorz & Gagolewski, Marek, 2023. "Interpretable reparameterisations of citation models," Journal of Informetrics, Elsevier, vol. 17(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lathabai, Hiran H., 2020. "ψ-index: A new overall productivity index for actors of science and technology," Journal of Informetrics, Elsevier, vol. 14(4).
    2. J. E. Hirsch, 2019. "hα: An index to quantify an individual’s scientific leadership," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 673-686, February.
    3. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    4. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    5. Bornmann, Lutz & Mutz, Rüdiger & Hug, Sven E. & Daniel, Hans-Dieter, 2011. "A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants," Journal of Informetrics, Elsevier, vol. 5(3), pages 346-359.
    6. Christoph Steinbrüchel, 2019. "A citation index for principal investigators," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 305-320, January.
    7. Ana Paula dos Santos Rubem & Ariane Lima Moura & João Carlos Correia Baptista Soares de Mello, 2015. "Comparative analysis of some individual bibliometric indices when applied to groups of researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 1019-1035, January.
    8. Fenghua Wang & Ying Fan & An Zeng & Zengru Di, 2019. "A nonlinear collective credit allocation in scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1655-1668, June.
    9. Serge Galam, 2011. "Tailor based allocations for multiple authorship: a fractional gh-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 365-379, October.
    10. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    11. Anna Tietze & Philip Hofmann, 2019. "The h-index and multi-author hm-index for individual researchers in condensed matter physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 171-185, April.
    12. Anne-Wil Harzing & Satu Alakangas & David Adams, 2014. "hIa: an individual annual h-index to accommodate disciplinary and career length differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 811-821, June.
    13. Brandão, Luana Carneiro & Soares de Mello, João Carlos Correia Baptista, 2019. "A multi-criteria approach to the h-index," European Journal of Operational Research, Elsevier, vol. 276(1), pages 357-363.
    14. Persson, Rasmus A.X., 2017. "Bibliometric author evaluation through linear regression on the coauthor network," Journal of Informetrics, Elsevier, vol. 11(1), pages 299-306.
    15. Kakushadze, Zura, 2016. "An index for SSRN downloads," Journal of Informetrics, Elsevier, vol. 10(1), pages 9-28.
    16. J. E. Hirsch, 2010. "An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 741-754, December.
    17. Simoes, Nadia & Crespo, Nuno, 2020. "Self-Citations and scientific evaluation: Leadership, influence, and performance," Journal of Informetrics, Elsevier, vol. 14(1).
    18. Asma Hammami & Nabil Semmar, 2022. "The simplex simulation as a tool to reveal publication strategies and citation factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 319-350, January.
    19. Vîiu, Gabriel-Alexandru, 2016. "A theoretical evaluation of Hirsch-type bibliometric indicators confronted with extreme self-citation," Journal of Informetrics, Elsevier, vol. 10(2), pages 552-566.
    20. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-021-03879-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.