IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i3s1751157719303979.html
   My bibliography  Save this article

Predicting the citation counts of individual papers via a BP neural network

Author

Listed:
  • Ruan, Xuanmin
  • Zhu, Yuanyang
  • Li, Jiang
  • Cheng, Ying

Abstract

Predicting the citation counts of academic papers is of considerable significance to scientific evaluation. This study used a four-layer Back Propagation (BP) neural network model to predict the five-year citations of 49,834 papers in the library, information and documentation field indexed by the CSSCI database and published from 2000 to 2013. We extracted six paper features, two journal features, nine author features, eight reference features, and five early citation features to make the prediction. The empirical experiments showed that the performance of the BP neural network is significantly better than those of the six baseline models. In terms of the prediction effect, the accuracy of the model at predicting infrequently cited papers was higher than that for frequently cited ones. We determined that five essential features have significant effects on the prediction performance of the model, i.e., ‘citations in the first two years’, ‘first-cited age’, ‘paper length’, ‘month of publication’, and ‘self-citations of journals’, and the other features contribute only slightly to the prediction.

Suggested Citation

  • Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719303979
    DOI: 10.1016/j.joi.2020.101039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719303979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2020.101039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    2. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    3. Xinning Su & Sanhong Deng & Si Shen, 2014. "The design and application value of the Chinese Social Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1567-1582, March.
    4. Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
    5. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    6. Fenghua Wang & Ying Fan & An Zeng & Zengru Di, 2019. "Can we predict ESI highly cited publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 109-125, January.
    7. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    8. Mingyang Wang & Guang Yu & Daren Yu, 2011. "Mining typical features for highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 695-706, June.
    9. Roth, Camille & Wu, Jiang & Lozano, Sergi, 2012. "Assessing impact and quality from local dynamics of citation networks," Journal of Informetrics, Elsevier, vol. 6(1), pages 111-120.
    10. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    11. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Felici, Giovanni, 2019. "Predicting publication long-term impact through a combination of early citations and journal impact factor," Journal of Informetrics, Elsevier, vol. 13(1), pages 32-49.
    12. Nabil Amara & Réjean Landry & Norrin Halilem, 2015. "What can university administrators do to increase the publication and citation scores of their faculty members?," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 489-530, May.
    13. Zhang, Sifei & Yuan, Chien-Chung & Chang, Ke-Chiun & Ken, Yun, 2012. "Exploring the nonlinear effects of patent H index, patent citations, and essential technological strength on corporate performance by using artificial neural network," Journal of Informetrics, Elsevier, vol. 6(4), pages 485-495.
    14. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    15. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    16. Juan Xie & Kaile Gong & Jiang Li & Qing Ke & Hyonchol Kang & Ying Cheng, 2019. "A probe into 66 factors which are possibly associated with the number of citations an article received," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1429-1454, June.
    17. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    18. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    19. Mingyang Wang & Guang Yu & Shuang An & Daren Yu, 2012. "Discovery of factors influencing citation impact based on a soft fuzzy rough set model," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 635-644, December.
    20. Lior Rokach & Meir Kalech & Ido Blank & Rami Stern, 2011. "Who is going to win the next Association for the Advancement of Artificial Intelligence Fellowship Award? Evaluating researchers by mining bibliographic data," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(12), pages 2456-2470, December.
    21. Fatemeh Rostami & Asghar Mohammadpoorasl & Mohammad Hajizadeh, 2014. "The effect of characteristics of title on citation rates of articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2007-2010, March.
    22. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    23. Vanclay, Jerome K., 2013. "Factors affecting citation rates in environmental science," Journal of Informetrics, Elsevier, vol. 7(2), pages 265-271.
    24. T.C. Wong & Alan H.S. Chan, 2015. "A neural network-based methodology of quantifying the association between the design variables and the users’ performances," International Journal of Production Research, Taylor & Francis Journals, vol. 53(13), pages 4050-4067, July.
    25. Lawrence D. Fu & Constantin F. Aliferis, 2010. "Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 257-270, October.
    26. Lior Rokach & Meir Kalech & Ido Blank & Rami Stern, 2011. "Who is going to win the next Association for the Advancement of Artificial Intelligence Fellowship Award? Evaluating researchers by mining bibliographic data," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(12), pages 2456-2470, December.
    27. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Zhuanlan, 2024. "Textual features of peer review predict top-cited papers: An interpretable machine learning perspective," Journal of Informetrics, Elsevier, vol. 18(2).
    2. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    3. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    4. Tao Liu & Zhongyang Yu, 2022. "RETRACTED ARTICLE: The relationship between open technological innovation, intellectual property rights capabilities, network strategy, and AI technology under the Internet of Things," Operations Management Research, Springer, vol. 15(3), pages 793-808, December.
    5. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    6. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    7. Mingyue Sun & Tingcan Ma & Lewei Zhou & Mingliang Yue, 2023. "Analysis of the relationships among paper citation and its influencing factors: a Bayesian network-based approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3017-3033, May.
    8. Xueshen Chen & Yuesong Xiong & Peina Dang & Chonggang Tao & Changpeng Wu & Enzao Zhang & Tao Wu, 2023. "A Real-Time Shrimp with and without Shells Recognition Method for Automatic Peeling Machines Based on Tactile Perception," Agriculture, MDPI, vol. 13(2), pages 1-14, February.
    9. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.
    10. Xiaomei Bai & Fuli Zhang & Jinzhou Li & Zhong Xu & Zeeshan Patoli & Ivan Lee, 2021. "Quantifying scientific collaboration impact by exploiting collaboration-citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7993-8008, September.
    11. Hu, Zewen & Zhou, Xiji & Lin, Angela, 2023. "Evaluation and identification of potential high-value patents in the field of integrated circuits using a multidimensional patent indicators pre-screening strategy and machine learning approaches," Journal of Informetrics, Elsevier, vol. 17(2).
    12. Li, Xin & Tang, Xuli & Cheng, Qikai, 2022. "Predicting the clinical citation count of biomedical papers using multilayer perceptron neural network," Journal of Informetrics, Elsevier, vol. 16(4).
    13. Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
    14. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    15. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    16. Fang Zhang & Shengli Wu, 2024. "Predicting citation impact of academic papers across research areas using multiple models and early citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4137-4166, July.
    17. Croft, William L. & Sack, Jörg-Rüdiger, 2022. "Predicting the citation count and CiteScore of journals one year in advance," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Wang, Xiaoli & Liang, Wenting & Ye, Xuanting & Chen, Lingdi & Liu, Yun, 2024. "Disruptive development path measurement for emerging technologies based on the patent citation network," Journal of Informetrics, Elsevier, vol. 18(1).
    19. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    20. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
    21. Yi-di Hua & Ke-man Hu & Lu-yi Qiu & Hong-an Dong & Lei Ding & Sio-Long Lo, 2022. "Exploring the interaction relationship between Beautiful China-SciTech innovation using coupling coordination and predictive analysis: a case study of Zhejiang," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12097-12130, October.
    22. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    23. Kumar, Dhananjay & Bhowmick, Plaban Kumar & Paik, Jiaul H, 2023. "Researcher influence prediction (ResIP) using academic genealogy network," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    2. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    3. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    4. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    5. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    6. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    7. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    8. Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
    9. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    10. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    11. Fan, Lingxu & Guo, Lei & Wang, Xinhua & Xu, Liancheng & Liu, Fangai, 2022. "Does the author’s collaboration mode lead to papers’ different citation impacts? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 16(4).
    12. Juan Xie & Kaile Gong & Jiang Li & Qing Ke & Hyonchol Kang & Ying Cheng, 2019. "A probe into 66 factors which are possibly associated with the number of citations an article received," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1429-1454, June.
    13. Sepideh Fahimifar & Khadijeh Mousavi & Fatemeh Mozaffari & Marcel Ausloos, 2023. "Identification of the most important external features of highly cited scholarly papers through 3 (i.e., Ridge, Lasso, and Boruta) feature selection data mining methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3685-3712, August.
    14. Yifan Qian & Wenge Rong & Nan Jiang & Jie Tang & Zhang Xiong, 2017. "Citation regression analysis of computer science publications in different ranking categories and subfields," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1351-1374, March.
    15. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    16. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    17. Liu, Qiuling & Guo, Lei & Sun, Yiping & Ren, Linlin & Wang, Xinhua & Han, Xiaohui, 2024. "Do scholars' collaborative tendencies impact the quality of their publications? A generalized propensity score matching analysis," Journal of Informetrics, Elsevier, vol. 18(1).
    18. Tehmina Amjad & Nafeesa Shahid & Ali Daud & Asma Khatoon, 2022. "Citation burst prediction in a bibliometric network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2773-2790, May.
    19. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    20. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719303979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.