IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v101y2014i2d10.1007_s11192-014-1279-6.html
   My bibliography  Save this article

Citation impact prediction for scientific papers using stepwise regression analysis

Author

Listed:
  • Tian Yu

    (Harbin Institute of Technology)

  • Guang Yu

    (Harbin Institute of Technology)

  • Peng-Yu Li

    (Harbin Institute of Technology)

  • Liang Wang

    (Harbin Institute of Technology)

Abstract

Researchers typically pay greater attention to scientific papers published within the last 2 years, and especially papers that may have great citation impact in the future. However, the accuracy of current citation impact prediction methods is still not satisfactory. This paper argues that objective features of scientific papers can make citation impact prediction relatively accurate. The external features of a paper, features of authors, features of the journal of publication, and features of citations are all considered in constructing a paper’s feature space. The stepwise multiple regression analysis is used to select appropriate features from the space and to build a regression model for explaining the relationship between citation impact and the chosen features. The validity of this model is also experimentally verified in the subject area of Information Science & Library Science. The results show that the regression model is effective within this subject.

Suggested Citation

  • Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
  • Handle: RePEc:spr:scient:v:101:y:2014:i:2:d:10.1007_s11192-014-1279-6
    DOI: 10.1007/s11192-014-1279-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1279-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1279-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sei‐Ching Joanna Sin, 2011. "International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(9), pages 1770-1783, September.
    2. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    3. Wolfgang Glänzel & Balázs Schlemmer & Bart Thijs, 2003. "Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 571-586, November.
    4. Radicchi, Filippo & Castellano, Claudio, 2012. "Testing the fairness of citation indicators for comparison across scientific domains: The case of fractional citation counts," Journal of Informetrics, Elsevier, vol. 6(1), pages 121-130.
    5. Rickard Danell, 2011. "Can the quality of scientific work be predicted using information on the author's track record?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 50-60, January.
    6. Loet Leydesdorff & Lutz Bornmann, 2011. "Integrated impact indicators compared with impact factors: An alternative research design with policy implications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(11), pages 2133-2146, November.
    7. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    8. Sei-Ching Joanna Sin, 2011. "International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(9), pages 1770-1783, September.
    9. Gibbons, Michael R., 1982. "Multivariate tests of financial models : A new approach," Journal of Financial Economics, Elsevier, vol. 10(1), pages 3-27, March.
    10. Lawrence D. Fu & Yindalon Aphinyanaphongs & Constantin F. Aliferis, 2013. "Computer models for identifying instrumental citations in the biomedical literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 871-882, December.
    11. Mingyang Wang & Guang Yu & Shuang An & Daren Yu, 2012. "Discovery of factors influencing citation impact based on a soft fuzzy rough set model," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 635-644, December.
    12. Katarina Prpić, 2002. "Gender and productivity differentials in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(1), pages 27-58, September.
    13. Hendrik P. van Dalen & K?ne Henkens, 2005. "Signals in science - On the importance of signaling in gaining attention in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(2), pages 209-233, August.
    14. Loet Leydesdorff, 2012. "Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 355-365, August.
    15. Hendrik P. van Dalen & Kène Henkens, 1999. "How Influential Are Demography Journals?," Population and Development Review, The Population Council, Inc., vol. 25(2), pages 229-251, June.
    16. Quentin L. Burrell, 2003. "Predicting future citation behavior," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 372-378, March.
    17. Quentin L. Burrel, 2001. "Stochastic modelling of the first-citation distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(1), pages 3-12, September.
    18. Lawrence D. Fu & Constantin F. Aliferis, 2010. "Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 257-270, October.
    19. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    20. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    21. Rickard Danell, 2011. "Can the quality of scientific work be predicted using information on the author's track record?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 50-60, January.
    22. Hendrik P. Van Dalen & Kène Henkens, 2001. "What makes a scientific article influential? The case of demographers," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 455-482, March.
    23. Mingyang Wang & Guang Yu & Daren Yu, 2011. "Mining typical features for highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 695-706, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingyang Wang & Guang Yu & Shuang An & Daren Yu, 2012. "Discovery of factors influencing citation impact based on a soft fuzzy rough set model," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 635-644, December.
    2. Wang, Mingyang & Yu, Guang & Xu, Jianzhong & He, Huixin & Yu, Daren & An, Shuang, 2012. "Development a case-based classifier for predicting highly cited papers," Journal of Informetrics, Elsevier, vol. 6(4), pages 586-599.
    3. Peter Klimek & Aleksandar Jovanovic & Rainer Egloff & Reto Schneider, 2016. "Successful fish go with the flow: citation impact prediction based on centrality measures for term–document networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1265-1282, June.
    4. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    5. Li, Xin & Wen, Yang & Jiang, Jiaojiao & Daim, Tugrul & Huang, Lucheng, 2022. "Identifying potential breakthrough research: A machine learning method using scientific papers and Twitter data," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    7. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    8. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    9. Abramo, Giovanni & D’Angelo, Ciriaco Andrea, 2015. "The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy," Journal of Informetrics, Elsevier, vol. 9(4), pages 746-761.
    10. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    11. Yifan Qian & Wenge Rong & Nan Jiang & Jie Tang & Zhang Xiong, 2017. "Citation regression analysis of computer science publications in different ranking categories and subfields," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1351-1374, March.
    12. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    13. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    14. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    15. Liu, Qiuling & Guo, Lei & Sun, Yiping & Ren, Linlin & Wang, Xinhua & Han, Xiaohui, 2024. "Do scholars' collaborative tendencies impact the quality of their publications? A generalized propensity score matching analysis," Journal of Informetrics, Elsevier, vol. 18(1).
    16. Ke, Qing, 2020. "The citation disadvantage of clinical research," Journal of Informetrics, Elsevier, vol. 14(1).
    17. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    18. Lindahl, Jonas, 2018. "Predicting research excellence at the individual level: The importance of publication rate, top journal publications, and top 10% publications in the case of early career mathematicians," Journal of Informetrics, Elsevier, vol. 12(2), pages 518-533.
    19. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    20. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:101:y:2014:i:2:d:10.1007_s11192-014-1279-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.