IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v112y2017i3d10.1007_s11192-017-2433-8.html
   My bibliography  Save this article

Detecting latent referential articles based on their vitality performance in the latest 2 years

Author

Listed:
  • Mingyang Wang

    (Northeast Forestry University)

  • Shi Li

    (Northeast Forestry University)

  • Guangsheng Chen

    (Northeast Forestry University)

Abstract

In this paper, we propose a methodology to detect latent referential articles through a universal, citation-based investigation. We discuss articles’ dynamic vitality performance, concealed in their citation distributions, in order to understand the mechanisms that govern which articles are likely to be referenced in the future. Articles have diverse vitality performances expressed in the amount of citations obtained in different time periods. Through an examination of the correlation between articles’ future citation count and their past citations, we establish the optimal time period during which it is best to forecast articles’ future referential possibilities. The results show that the latest 2 years is the optimal time period. In other words, the correlation between the articles’ future citation count and their past citation count reaches a maximum value in the most recent 2-year period. The articles with a higher vitality performance in the most recent 2 years have a higher ratio of being cited as references in the future. These results help, not only, in understanding mechanisms of generating references, but also provide an additional indicator for decision makers to evaluate the academic performance of individuals according to their citation performance in the latest 2 years.

Suggested Citation

  • Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
  • Handle: RePEc:spr:scient:v:112:y:2017:i:3:d:10.1007_s11192-017-2433-8
    DOI: 10.1007/s11192-017-2433-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2433-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2433-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    2. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    3. Bornmann, Lutz & Leydesdorff, Loet, 2015. "Does quality and content matter for citedness? A comparison with para-textual factors and over time," Journal of Informetrics, Elsevier, vol. 9(3), pages 419-429.
    4. H. P. F. Peters & A. F. J. van Raan, 1994. "On determinants of citation scores: A case study in chemical engineering," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 45(1), pages 39-49, January.
    5. Aaron Lercher, 2013. "Correlation over time for citations to mathematics articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(3), pages 455-463, March.
    6. Oscar N. Ventura & Alvaro W. Mombrú, 2006. "Use of bibliometric information to assist research policy making. A comparison of publication and citation profiles of Full and Associate Professors at a School of Chemistry in Uruguay," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(2), pages 287-313, November.
    7. Aaron Lercher, 2013. "Correlation over time for citations to mathematics articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 455-463, March.
    8. Bornmann, Lutz, 2013. "The problem of citation impact assessments for recent publication years in institutional evaluations," Journal of Informetrics, Elsevier, vol. 7(3), pages 722-729.
    9. JingJing Zhang & Jiancheng Guan, 2017. "Scientific relatedness and intellectual base: a citation analysis of un-cited and highly-cited papers in the solar energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 141-162, January.
    10. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    11. Jianjun Sun & Chao Min & Jiang Li, 2016. "A vector for measuring obsolescence of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 745-757, May.
    12. Vladimir Pislyakov & Elena Shukshina, 2014. "Measuring excellence in Russia: Highly cited papers, leading institutions, patterns of national and international collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(11), pages 2321-2330, November.
    13. Glenn D. Walters, 2006. "Predicting subsequent citations to articles published in twelve crime-psychology journals: Author impact versus journal impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(3), pages 499-510, December.
    14. David Adam, 2002. "The counting house," Nature, Nature, vol. 415(6873), pages 726-729, February.
    15. Ying Ding & Guo Zhang & Tamy Chambers & Min Song & Xiaolong Wang & Chengxiang Zhai, 2014. "Content-based citation analysis: The next generation of citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1820-1833, September.
    16. Derek De Solla Price, 1976. "A general theory of bibliometric and other cumulative advantage processes," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(5), pages 292-306, September.
    17. Bornmann, Lutz & Leydesdorff, Loet, 2012. "Which are the best performing regions in information science in terms of highly cited papers? Some improvements of our previous mapping approaches," Journal of Informetrics, Elsevier, vol. 6(2), pages 336-345.
    18. Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
    19. Werner Marx & Lutz Bornmann, 2015. "On the causes of subject-specific citation rates in Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1823-1827, February.
    20. Hendrik P. van Dalen & K?ne Henkens, 2005. "Signals in science - On the importance of signaling in gaining attention in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(2), pages 209-233, August.
    21. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    22. Leo Egghe & Ronald Rousseau, 2000. "Aging, obsolescence, impact, growth, and utilization: Definitions and relations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(11), pages 1004-1017.
    23. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    24. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    25. Hendrik P. van Dalen & Kène Henkens, 1999. "How Influential Are Demography Journals?," Population and Development Review, The Population Council, Inc., vol. 25(2), pages 229-251, June.
    26. Quentin L. Burrell, 2003. "Predicting future citation behavior," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 372-378, March.
    27. Yasuhiro Yamashita & Daisuke Yoshinaga, 2014. "Influence of researchers’ international mobilities on publication: a comparison of highly cited and uncited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1475-1489, November.
    28. Quentin L. Burrell, 2002. "The nth-citation distribution and obsolescence," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(3), pages 309-323, March.
    29. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    30. Lawrence D. Fu & Constantin F. Aliferis, 2010. "Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 257-270, October.
    31. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    32. Hu, Zhigang & Chen, Chaomei & Liu, Zeyuan, 2013. "Where are citations located in the body of scientific articles? A study of the distributions of citation locations," Journal of Informetrics, Elsevier, vol. 7(4), pages 887-896.
    33. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    34. Nick Haslam & Lauren Ban & Leah Kaufmann & Stephen Loughnan & Kim Peters & Jennifer Whelan & Sam Wilson, 2008. "What makes an article influential? Predicting impact in social and personality psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 169-185, July.
    35. Yanhui Song & Feng Ma & Siluo Yang, 2015. "Comparative study on the obsolescence of humanities and social sciences in China: under the new situation of web," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 365-388, January.
    36. Mingyang Wang & Guang Yu & Daren Yu, 2011. "Mining typical features for highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 695-706, June.
    37. Zhi Li & Qinke Peng & Che Liu, 2016. "Two citation-based indicators to measure latent referential value of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1299-1313, September.
    38. Ronald N. Kostoff, 2007. "The difference between highly and poorly cited medical articles in the journal Lancet," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(3), pages 513-520, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kehan Wang & Wenxuan Shi & Junsong Bai & Xiaoping Zhao & Liying Zhang, 2021. "Prediction and application of article potential citations based on nonlinear citation-forecasting combined model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6533-6550, August.
    2. Binglu Wang & Yi Bu & Yang Xu, 2018. "A quantitative exploration on reasons for citing articles from the perspective of cited authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 675-687, August.
    3. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Tianyu Zhang, 2019. "Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    4. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    2. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    3. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    4. Cristina López-Duarte & Marta M. Vidal-Suárez & Belén González-Díaz, 2019. "Cross-national distance and international business: an analysis of the most influential recent models," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 173-208, October.
    5. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    6. Wang, Mingyang & Yu, Guang & Xu, Jianzhong & He, Huixin & Yu, Daren & An, Shuang, 2012. "Development a case-based classifier for predicting highly cited papers," Journal of Informetrics, Elsevier, vol. 6(4), pages 586-599.
    7. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    8. Sepideh Fahimifar & Khadijeh Mousavi & Fatemeh Mozaffari & Marcel Ausloos, 2023. "Identification of the most important external features of highly cited scholarly papers through 3 (i.e., Ridge, Lasso, and Boruta) feature selection data mining methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3685-3712, August.
    9. Juan Xie & Kaile Gong & Ying Cheng & Qing Ke, 2019. "The correlation between paper length and citations: a meta-analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 763-786, March.
    10. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    11. Mingyang Wang & Guang Yu & Shuang An & Daren Yu, 2012. "Discovery of factors influencing citation impact based on a soft fuzzy rough set model," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 635-644, December.
    12. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    13. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    14. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    15. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    16. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    17. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    18. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    19. Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
    20. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:112:y:2017:i:3:d:10.1007_s11192-017-2433-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.