IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i3s1751157719302676.html
   My bibliography  Save this article

Predicting publication productivity for researchers: A piecewise Poisson model

Author

Listed:
  • Xie, Zheng

Abstract

Predicting the publication productivity of research groups is a basic task for academic administrators and funding agencies. However, it is an elusive task due to diversity in researchers’ productivity patterns. This study proposed a model for the dynamics of the productivity, inspired by the distribution feature of the number of a researcher's publications. It is a piecewise Poisson model, analyzing and predicting the publication productivity of researchers by piecewise regression. The principle of the model is built on the explanation for the distribution feature as a result of an inhomogeneous Poisson process that can be approximated as a piecewise Poisson process. The principle is validated by applying it on the high-quality dblp dataset. The effectiveness of the model is tested on the dataset by fine fittings on the distribution of the number of publications for researchers, the evolutionary trend of their publication productivity, and the probability of producing publications. The model has the advantage of providing results in an unbiased way; thus would be useful for funding agencies that evaluate a vast number of applications provided by research groups with a quantitative index on publications.

Suggested Citation

  • Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719302676
    DOI: 10.1016/j.joi.2020.101065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719302676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2020.101065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Felici, Giovanni, 2019. "Predicting publication long-term impact through a combination of early citations and journal impact factor," Journal of Informetrics, Elsevier, vol. 13(1), pages 32-49.
    2. Cao, Xuanyu & Chen, Yan & Ray Liu, K.J., 2016. "A data analytic approach to quantifying scientific impact," Journal of Informetrics, Elsevier, vol. 10(2), pages 471-484.
    3. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    4. Milojević, Staša, 2013. "Accuracy of simple, initials-based methods for author name disambiguation," Journal of Informetrics, Elsevier, vol. 7(4), pages 767-773.
    5. David I Stern, 2014. "High-Ranked Social Science Journal Articles Can Be Identified from Early Citation Information," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    6. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    7. Samuel F. Way & Allison C. Morgan & Daniel B. Larremore & Aaron Clauset, 2019. "Productivity, prominence, and the effects of academic environment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(22), pages 10729-10733, May.
    8. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    9. Zheng Xie, 2019. "A cooperative game model for the multimodality of coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 503-519, October.
    10. Peter Klimek & Aleksandar Jovanovic & Rainer Egloff & Reto Schneider, 2016. "Successful fish go with the flow: citation impact prediction based on centrality measures for term–document networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1265-1282, June.
    11. Xie, Zheng, 2019. "A Bayesian model on the merging errors of coauthorship data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    12. Vasilios D. Kosteas, 2018. "Predicting long-run citation counts for articles in top economics journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1395-1412, June.
    13. Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
    14. Christopher McCarty & James W. Jawitz & Allison Hopkins & Alex Goldman, 2013. "Predicting author h-index using characteristics of the co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 467-483, August.
    15. Tomassini, Marco & Luthi, Leslie, 2007. "Empirical analysis of the evolution of a scientific collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 750-764.
    16. Xie, Zheng, 2020. "Predicting the number of coauthors for researchers: A learning model," Journal of Informetrics, Elsevier, vol. 14(2).
    17. Mengjiao Qi & An Zeng & Menghui Li & Ying Fan & Zengru Di, 2017. "Standing on the shoulders of giants: the effect of outstanding scientists on young collaborators’ careers," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1839-1850, June.
    18. Z. Xie & Z. Ouyang & J. Li & E. Dong & D. Yi, 2018. "Modelling transition phenomena of scientific coauthorship networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 305-317, February.
    19. Zheng Xie & Yanwu Li & Zhemin Li, 2020. "Assessing and predicting the quality of research master’s theses: an application of scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 953-972, August.
    20. Olof Ejermo & Claudio Fassio & John Källström, 2020. "Does Mobility across Universities Raise Scientific Productivity?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 603-624, June.
    21. Xie, Zheng & Ouyang, Zhenzheng & Li, Jianping, 2016. "A geometric graph model for coauthorship networks," Journal of Informetrics, Elsevier, vol. 10(1), pages 299-311.
    22. Zheng Xie & Zonglin Xie & Miao Li & Jianping Li & Dongyun Yi, 2017. "Modeling the coevolution between citations and coauthorship of scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 483-507, July.
    23. Lorenzo Ductor, 2015. "Does Co-authorship Lead to Higher Academic Productivity?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 385-407, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.
    2. Xie, Zheng & Lv, Yiqin & Song, Yiping & Wang, Qi, 2024. "Data labeling through the centralities of co-reference networks improves the classification accuracy of scientific papers," Journal of Informetrics, Elsevier, vol. 18(2).
    3. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.
    2. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    3. Zheng Xie, 2021. "A distributed hypergraph model for simulating the evolution of large coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4609-4638, June.
    4. Xie, Zheng, 2020. "Predicting the number of coauthors for researchers: A learning model," Journal of Informetrics, Elsevier, vol. 14(2).
    5. Wang, Xing & Zhang, Zhihui, 2020. "Improving the reliability of short-term citation impact indicators by taking into account the correlation between short- and long-term citation impact," Journal of Informetrics, Elsevier, vol. 14(2).
    6. Zheng Xie, 2019. "A cooperative game model for the multimodality of coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 503-519, October.
    7. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    8. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    9. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    10. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    11. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    12. Hu, Ya-Han & Tai, Chun-Tien & Liu, Kang Ernest & Cai, Cheng-Fang, 2020. "Identification of highly-cited papers using topic-model-based and bibliometric features: the consideration of keyword popularity," Journal of Informetrics, Elsevier, vol. 14(1).
    13. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    14. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    15. Xie, Zonglin & Xie, Zheng & Li, Jianping & Yang, Qian, 2018. "Exploring the influence of social activity on scientific career," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 189-198.
    16. Tehmina Amjad & Nafeesa Shahid & Ali Daud & Asma Khatoon, 2022. "Citation burst prediction in a bibliometric network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2773-2790, May.
    17. Kehan Wang & Wenxuan Shi & Junsong Bai & Xiaoping Zhao & Liying Zhang, 2021. "Prediction and application of article potential citations based on nonlinear citation-forecasting combined model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6533-6550, August.
    18. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    19. Sato, Ryoma & Yamada, Makoto & Kashima, Hisashi, 2022. "Poincare: Recommending Publication Venues via Treatment Effect Estimation," Journal of Informetrics, Elsevier, vol. 16(2).
    20. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719302676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.