IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v44y2015i1p195-205.html
   My bibliography  Save this article

The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems

Author

Listed:
  • Breitzman, Anthony
  • Thomas, Patrick

Abstract

Emerging technologies are of great interest to a wide range of stakeholders, but identifying such technologies is often problematic, especially given the overwhelming amount of information available to analysts and researchers on many subjects. This paper describes the Emerging Clusters Model, which uses advanced patent citation techniques to locate emerging technologies in close to real time, rather than retrospectively. The model covers multiple patent systems, and is designed to be extensible to additional systems. This paper also describes the first large scale test of the Emerging Clusters Model. This test reveals that patents in emerging clusters consistently have a significantly higher impact on subsequent technological developments than patents outside these clusters. Given that these emerging clusters are defined as soon as a given time period ends, without the aid of any forward-looking information, this suggests that the Emerging Clusters Model may be a useful tool for identifying interesting new technologies as they emerge.

Suggested Citation

  • Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
  • Handle: RePEc:eee:respol:v:44:y:2015:i:1:p:195-205
    DOI: 10.1016/j.respol.2014.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733314001103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2014.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Douglas K.R. & Huang, Lu & Guo, Ying & Porter, Alan L., 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 267-285.
    2. Rosalie Ruegg & Patrick Thomas, 2009. "Tracing government-funded research in wind energy to commercial renewable power generation," Research Evaluation, Oxford University Press, vol. 18(5), pages 387-396, December.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Connie K N Chang & Anthony Breitzman, 2009. "Using patents prospectively to identify emerging, high-impact technological clusters," Research Evaluation, Oxford University Press, vol. 18(5), pages 357-364, December.
    5. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2000. "Market Value and Patent Citations: A First Look," NBER Working Papers 7741, National Bureau of Economic Research, Inc.
    6. Blind, Knut & Cremers, Katrin & Mueller, Elisabeth, 2009. "The influence of strategic patenting on companies' patent portfolios," Research Policy, Elsevier, vol. 38(2), pages 428-436, March.
    7. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    8. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    9. Ivana Roche & Dominique Besagni & Claire François & Marianne Hörlesberger & Edgar Schiebel, 2010. "Identification and characterisation of technological topics in the field of Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 663-676, March.
    10. Unknown, 2012. "A Roadmap to the Smartphone Patent Wars and FRAND Licensing," Antitrust Chronicle, Competition Policy International, vol. 4.
    11. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    12. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    13. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    14. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    15. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    16. Patrick Thomas & Anthony Breitzman, 2006. "A method for identifying hot patents and linking them to government-funded scientific research," Research Evaluation, Oxford University Press, vol. 15(2), pages 145-152, August.
    17. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    18. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    19. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    20. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.
    21. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    22. Shyh-Jen Wang, 2007. "Factors to evaluate a patent in addition to citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(3), pages 509-522, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony Breitzman & Patrick Thomas, 2015. "Inventor team size as a predictor of the future citation impact of patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 631-647, May.
    2. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    3. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    4. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    5. Mu-Hsuan Huang & Dar-Zen Chen & Danqi Shen & Mona S. Wang & Fred Y. Ye, 2015. "Measuring technological performance of assignees using trace metrics in three fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 61-86, July.
    6. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    7. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    8. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    9. Frietsch, Rainer & Neuhäusler, Peter & Michels, Carolin & Dornbusch, Friedrich, 2014. "Medical research at universities – An international comparison," Studien zum deutschen Innovationssystem 8-2014, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    10. C. Gay & C. Le Bas & P. Patel & K. Touach, 2005. "The determinants of patent citations: an empirical analysis of French and British patents in the US," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 339-350.
    11. Mu-Hsuan Huang & Hui-Yun Sung & Chun-Chieh Wang & Dar-Zen Chen, 2013. "Exploring patent performance and technology interactions of universities, industries, governments and individuals," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 11-26, July.
    12. Chang, Ke-Chiun & Chen, Dar-Zen & Huang, Mu-Hsuan, 2012. "The relationships between the patent performance and corporation performance," Journal of Informetrics, Elsevier, vol. 6(1), pages 131-139.
    13. Hirschey, Mark & Richardson, Vernon J., 2004. "Are scientific indicators of patent quality useful to investors?," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 91-107, January.
    14. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    15. Zi-Lin He & Min Deng, 2007. "The evidence of systematic noise in non-patent references: A study of New Zealand companies’ patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(1), pages 149-166, July.
    16. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    17. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    18. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    19. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States," The Journal of Technology Transfer, Springer, vol. 44(3), pages 741-777, June.
    20. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:44:y:2015:i:1:p:195-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.