IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v121y2019i3d10.1007_s11192-019-03241-6.html
   My bibliography  Save this article

TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation

Author

Listed:
  • Marie Katsurai

    (Doshisha University)

  • Shunsuke Ono

    (Tokyo Institute of Technology)

Abstract

Mapping the knowledge structure from word co-occurrences in a collection of academic papers has been widely used to provide insight into the topic evolution in an arbitrary research field. In a traditional approach, the paper collection is first divided into temporal subsets, and then a co-word network is independently depicted in a 2D map to characterize each period’s trend. To effectively map emerging research trends from such a time-series of co-word networks, this paper presents TrendNets, a novel visualization methodology that highlights the rapid changes in edge weights over time. Specifically, we formulated a new convex optimization framework that decomposes the matrix constructed from dynamic co-word networks into a smooth part and a sparse part: the former represents stationary research topics, while the latter corresponds to bursty research topics. Simulation results on synthetic data demonstrated that our matrix decomposition approach achieved the best burst detection performance over four baseline methods. In experiments conducted using papers published in the past 16 years at three conferences in different fields, we showed the effectiveness of TrendNets compared to the traditional co-word representation. We have made our codes available on the Web to encourage scientific mapping in all research fields.

Suggested Citation

  • Marie Katsurai & Shunsuke Ono, 2019. "TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1583-1598, December.
  • Handle: RePEc:spr:scient:v:121:y:2019:i:3:d:10.1007_s11192-019-03241-6
    DOI: 10.1007/s11192-019-03241-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03241-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03241-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. S. Ravikumar & Ashutosh Agrahari & S. N. Singh, 2015. "Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 929-955, January.
    3. Shimelis G. Assefa & Abebe Rorissa, 2013. "A bibliometric mapping of the structure of STEM education using co‐word analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(12), pages 2513-2536, December.
    4. Shimelis G. Assefa & Abebe Rorissa, 2013. "A bibliometric mapping of the structure of STEM education using co-word analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(12), pages 2513-2536, December.
    5. Meen Chul Kim & Chaomei Chen, 2015. "A scientometric review of emerging trends and new developments in recommendation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 239-263, July.
    6. Chang-Ping Hu & Ji-Ming Hu & Sheng-Li Deng & Yong Liu, 2013. "A co-word analysis of library and information science in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 369-382, November.
    7. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    8. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    9. Margarita Topalli & Silvester Ivanaj, 2016. "Mapping the evolution of the impact of economic transition on Central and Eastern European enterprises: A co-word analysis," Post-Print hal-01512894, HAL.
    10. Xiaoguang Wang & Qikai Cheng & Wei Lu, 2014. "Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1253-1271, November.
    11. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.
    12. Topalli, Margerita & Ivanaj, Silvester, 2016. "Mapping the evolution of the impact of economic transition on Central and Eastern European enterprises: A co-word analysis," Journal of World Business, Elsevier, vol. 51(5), pages 744-759.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soroush Taheri & Sadegh Aliakbary, 2022. "Research trend prediction in computer science publications: a deep neural network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 849-869, February.
    2. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    3. Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.
    4. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    5. Qi Wang & Bentao Zou & Jialin Jin & Yuefen Wang, 2024. "Studying the linkage patterns and incremental evolution of domain knowledge structure: a perspective of structure deconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4249-4274, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    2. Seyedmohammadreza Hosseini & Hamed Baziyad & Rasoul Norouzi & Sheida Jabbedari Khiabani & Győző Gidófalvi & Amir Albadvi & Abbas Alimohammadi & Seyedehsan Seyedabrishami, 2021. "Mapping the intellectual structure of GIS-T field (2008–2019): a dynamic co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2667-2688, April.
    3. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    4. Sung Kim & Derek Hansen & Richard Helps, 2018. "Computing research in the academy: insights from theses and dissertations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 135-158, January.
    5. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    6. Guo Chen & Lu Xiao & Chang-ping Hu & Xue-qin Zhao, 2015. "Identifying the research focus of Library and Information Science institutions in China with institution-specific keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 707-724, May.
    7. Ping Liu & Qiong Wu & Xiangming Mu & Kaipeng Yu & Yiting Guo, 2015. "Detecting the intellectual structure of library and information science based on formal concept analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 737-762, September.
    8. Chen, Guo & Xiao, Lu, 2016. "Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods," Journal of Informetrics, Elsevier, vol. 10(1), pages 212-223.
    9. Liang Zhuang & Chao Ye & Scott N. Lieske, 2020. "Intertwining globality and locality: bibliometric analysis based on the top geography annual conferences in America and China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1075-1096, February.
    10. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    11. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    12. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    13. Jamali, Seyedh Mahboobeh & Nader, Ale Ebrahim & Jamali, Fatemeh, 2021. "The Role of STEM Education in Improving the Quality of Education: A Bibliometric Study," MPRA Paper 114214, University Library of Munich, Germany, revised 02 May 2022.
    14. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    15. Chao Zhang & Jiancheng Guan, 2017. "How to identify metaknowledge trends and features in a certain research field? Evidences from innovation and entrepreneurial ecosystem," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 1177-1197, November.
    16. Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    17. Danielle H. Lee, 2019. "Predictive power of conference-related factors on citation rates of conference papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 281-304, January.
    18. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    19. Alan L. Porter & David J. Schoeneck & Jan Youtie & Gregg E. A. Solomon & Seokbeom Kwon & Stephen F. Carley, 2019. "Learning about learning: patterns of sharing of research knowledge among Education, Border, and Cognitive Science fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1093-1117, March.
    20. Yunmei Liu & Shuai Zhang & Min Chen & Yenchun Wu & Zhengxian Chen, 2021. "The Sustainable Development of Financial Topic Detection and Trend Prediction by Data Mining," Sustainability, MDPI, vol. 13(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:121:y:2019:i:3:d:10.1007_s11192-019-03241-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.