IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v101y2014i2d10.1007_s11192-014-1347-y.html
   My bibliography  Save this article

Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks

Author

Listed:
  • Xiaoguang Wang

    (Wuhan University
    Wuhan University)

  • Qikai Cheng

    (Wuhan University)

  • Wei Lu

    (Wuhan University
    Wuhan University)

Abstract

Understanding the evolution of research topics is crucial to detect emerging trends in science. This paper proposes a new approach and a framework to discover the evolution of topics based on dynamic co-word networks and communities within them. The NEViewer software was developed according to this approach and framework, as compared to the existing studies and science mapping software tools, our work is innovative in three aspects: (a) the design of a longitudinal framework based on the dynamics of co-word communities; (b) it proposes a community labelling algorithm and community evolution verification algorithms; (c) and visualizes the evolution of topics at the macro and micro level respectively using alluvial diagrams and coloring networks. A case study in computer science and a careful assessment was implemented and demonstrating that the new method and the software NEViewer is feasible and effective.

Suggested Citation

  • Xiaoguang Wang & Qikai Cheng & Wei Lu, 2014. "Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1253-1271, November.
  • Handle: RePEc:spr:scient:v:101:y:2014:i:2:d:10.1007_s11192-014-1347-y
    DOI: 10.1007/s11192-014-1347-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1347-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1347-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    3. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    4. David Chavalarias & Jean-Philippe Cointet, 2013. "Phylomemetic Patterns in Science Evolution—The Rise and Fall of Scientific Fields," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    5. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    6. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Nees Jan Eck & Ludo Waltman & Ed C. M. Noyons & Reindert K. Buter, 2010. "Automatic term identification for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 581-596, March.
    8. Chen, P. & Redner, S., 2010. "Community structure of the physical review citation network," Journal of Informetrics, Elsevier, vol. 4(3), pages 278-290.
    9. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    10. Mark Herrera & David C Roberts & Natali Gulbahce, 2010. "Mapping the Evolution of Scientific Fields," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
    11. Edgar Schiebel & Marianne Hörlesberger & Ivana Roche & Claire François & Dominique Besagni, 2010. "An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 765-781, June.
    12. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    13. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    14. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    15. Katherine W. McCain, 2008. "Assessing an author's influence using time series historiographic mapping: The oeuvre of conrad hal waddington (1905–1975)," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(4), pages 510-525, February.
    16. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2012. "SciMAT: A new science mapping analysis software tool," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(8), pages 1609-1630, August.
    17. Martin Rosvall & Carl T Bergstrom, 2010. "Mapping Change in Large Networks," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-7, January.
    18. Nees Jan van Eck & Ludo Waltman, 2009. "How to normalize cooccurrence data? An analysis of some well‐known similarity measures," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1635-1651, August.
    19. Matthew L. Wallace & Yves Gingras & Russell Duhon, 2009. "A new approach for detecting scientific specialties from raw cocitation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 240-246, February.
    20. Einat Amitay & David Carmel & Michael Herscovici & Ronny Lempel & Aya Soffer, 2004. "Trend detection through temporal link analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 55(14), pages 1270-1281, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.
    2. Wei Lu & Yong Huang & Yi Bu & Qikai Cheng, 2018. "Functional structure identification of scientific documents in computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 463-486, April.
    3. Daniel Pélissier, 2022. "Le temps dans le discours, expérimentation d’un protocole d’observation des caractéristiques temporelles d’un corpus d’avis de salariés," Post-Print hal-04554013, HAL.
    4. Zongshui Wang & Hong Zhao & Yan Wang, 2015. "Social networks in marketing research 2001–2014: a co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 65-82, October.
    5. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    6. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    7. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    8. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    9. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    10. David Chavalarias & Quentin Lobbé & Alexandre Delanoë, 2022. "Draw me Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 545-575, January.
    11. Xie, Qing & Zhang, Xinyuan & Ding, Ying & Song, Min, 2020. "Monolingual and multilingual topic analysis using LDA and BERT embeddings," Journal of Informetrics, Elsevier, vol. 14(3).
    12. Marie Katsurai & Shunsuke Ono, 2019. "TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1583-1598, December.
    13. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    2. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    3. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    4. E. M. Murgado-Armenteros & M. Gutiérrez-Salcedo & F. J. Torres-Ruiz & M. J. Cobo, 2015. "Analysing the conceptual evolution of qualitative marketing research through science mapping analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 519-557, January.
    5. Shashi & Piera Centobelli & Roberto Cerchione & Amit Mittal, 2021. "Managing sustainability in luxury industry to pursue circular economy strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 432-462, January.
    6. Ruben Heradio & David Fernandez-Amoros & Cristina Cerrada & Manuel J. Cobo, 2020. "Group Decision-Making Based on Artificial Intelligence: A Bibliometric Analysis," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    7. Sun, Xiaoling & Ding, Kun & Lin, Yuan, 2016. "Mapping the evolution of scientific fields based on cross-field authors," Journal of Informetrics, Elsevier, vol. 10(3), pages 750-761.
    8. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    9. Mikel Alayo & Txomin Iturralde & Amaia Maseda & Gloria Aparicio, 2021. "Mapping family firm internationalization research: bibliometric and literature review," Review of Managerial Science, Springer, vol. 15(6), pages 1517-1560, August.
    10. Cristina Mele & Jaqueline Pels & Maria Spano & Irene Bernardo, 2023. "Emergent understandings of the market," Italian Journal of Marketing, Springer, vol. 2023(1), pages 1-25, March.
    11. Babak Amiri & Ramin Karimianghadim & Navid Yazdanjue & Liaquat Hossain, 2021. "Research topics and trends of the hashtag recommendation domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2689-2735, April.
    12. Jingyuan Yu & Juan Muñoz-Justicia, 2020. "A Bibliometric Overview of Twitter-Related Studies Indexed in Web of Science," Future Internet, MDPI, vol. 12(5), pages 1-18, May.
    13. Isotta Mac Fadden & Monica Santana & Esteban Vázquez-Cano & Eloy López-Meneses, 2021. "A science mapping analysis of ‘marginality, stigmatization and social cohesion’ in WoS (1963–2019)," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 275-293, February.
    14. Rodríguez-Bolívar, Manuel Pedro & Alcaide-Muñoz, Laura & Cobo, Manuel Jesús, 2018. "Analyzing the scientific evolution and impact of e-Participation research in JCR journals using science mapping," International Journal of Information Management, Elsevier, vol. 40(C), pages 111-119.
    15. Muñoz Leiva, Francisco & Rodríguez López, María Eugenia & García Martí, Bárbara, 2022. "Discovering prominent themes of the application of eye tracking technology in marketing research," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    16. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    17. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    18. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    19. Cathelijn J. F. Waaijer & Cornelis A. Bochove & Nees Jan Eck, 2011. "On the map: Nature and Science editorials," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 99-112, January.
    20. Livio Cricelli & Michele Grimaldi & Silvia Vermicelli, 2022. "Crowdsourcing and open innovation: a systematic literature review, an integrated framework and a research agenda," Review of Managerial Science, Springer, vol. 16(5), pages 1269-1310, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:101:y:2014:i:2:d:10.1007_s11192-014-1347-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.