IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i11d10.1007_s11192-024-05156-3.html
   My bibliography  Save this article

Understanding scientific knowledge evolution patterns based on egocentric network perspective

Author

Listed:
  • Jinqing Yang

    (Central China Normal University)

  • Xiufeng Cheng

    (Central China Normal University)

  • Guanghui Ye

    (Central China Normal University)

  • Yuchen Zhang

    (Macquarie University)

Abstract

Scientific knowledge evolution is an important signal for the innovative development of science and technology. As we know, new concepts and ideas are frequently born out of extensive recombination of existing concepts or notions. The evolution of a single knowledge unit or concept can be transformed into the formation of its ego-centered network from the perspective of combination innovation. Specifically, we proposed the eight research hypotheses from three aspects, namely, preferential attachment, transitivity, and homophily mechanisms. The 10,462 egocentric networks of scientific knowledge were extracted from knowledge co-occurrence network (KCN), and the Exponential Random Graph Models (ERGMs) were applied to model these sample networks individually, taking into account the influence of endogenous network structure and exogenous knowledge attribute variables. By conducting large-scale analytics on the fitting results, we found that (1) the degree centrality has a positive effect on knowledge evolution in the 99.9% sample networks, while the clustering coefficient contributes to the knowledge evolution in 56.8% sample networks at the 0.05 significance level; (2) the adoption behavior and domain impact of authors positively influence the scientific knowledge evolution, respectively, in the 93.5% and 80.8% sample networks; and (3) the knowledge type as well as the journal rank has an impact on the knowledge network evolution, demonstrating the homophily mechanism during the evolution of scientific knowledge.

Suggested Citation

  • Jinqing Yang & Xiufeng Cheng & Guanghui Ye & Yuchen Zhang, 2024. "Understanding scientific knowledge evolution patterns based on egocentric network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6719-6750, November.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-024-05156-3
    DOI: 10.1007/s11192-024-05156-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05156-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05156-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-024-05156-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.