IDEAS home Printed from https://ideas.repec.org/a/wsi/jikmxx/v15y2016i04ns0219649216500441.html
   My bibliography  Save this article

The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research

Author

Listed:
  • Hsia-Ching Chang

    (University of North Texas, USA)

Abstract

An important part of an organisation’s mission is protecting its information assets from inside or outside threats. As the information environment has become more diverse and inclusive, security concern has shifted from information assets resided in the organisation to information assets and networked devices exposed to broader cyberspace, such as cloud or Internet of things environment and mobile Internet. Organisations have to keep up with the knowledge and trends in information security and cyber-security to safeguard their information assets. Knowledge mapping will aid in this sort of knowledge management process. Mandatory standards and government regulations help industries establish best practices in cyber-security. Knowledge mapping and scientometric analysis across disciplines also provide a tracking system to notify researchers and practitioners should the new solutions and technology facilitating threat detection emerge. While various topics in information security and cyber-security have been extensively investigated in academia, identifying salient themes and development trajectories in information security and cyber-security research is relatively unexplored. This study employs scientometric analysis and topic modelling to develop knowledge maps that visualise core concepts associated with information security and cyber-security research over time and across disciplines. With scientometric analysis and knowledge mapping using topic models, this study identifies the commonality, difference, and relationship between information security and cyber-security research domains. This approach could gain insights into how these research areas have evolved and might be improved concerning learning and teaching cyber-security. The proposed approach to developing the knowledge map may be extended to other research areas.

Suggested Citation

  • Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
  • Handle: RePEc:wsi:jikmxx:v:15:y:2016:i:04:n:s0219649216500441
    DOI: 10.1142/S0219649216500441
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219649216500441
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219649216500441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meen Chul Kim & Chaomei Chen, 2015. "A scientometric review of emerging trends and new developments in recommendation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 239-263, July.
    2. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Nicholas V. Olijnyk, 2015. "A quantitative examination of the intellectual profile and evolution of information security from 1965 to 2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 883-904, November.
    5. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    6. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    7. Woo Hyoung Lee, 2008. "How to identify emerging research fields using scientometrics: An example in the field of Information Security," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 503-525, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savin, Ivan & Ott, Ingrid & Konop, Chris, 2022. "Tracing the evolution of service robotics: Insights from a topic modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    2. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    3. Gurzki, Hannes & Woisetschläger, David M., 2017. "Mapping the luxury research landscape: A bibliometric citation analysis," Journal of Business Research, Elsevier, vol. 77(C), pages 147-166.
    4. Francisco Diez-Martin & Alicia Blanco-Gonzalez & Camilo Prado-Roman, 2019. "Research Challenges in Digital Marketing: Sustainability," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    5. Francisco Díez-Martín & Alicia Blanco-González & Camilo Prado-Román, 2021. "The intellectual structure of organizational legitimacy research: a co-citation analysis in business journals," Review of Managerial Science, Springer, vol. 15(4), pages 1007-1043, May.
    6. Zheng-Dong Li & Bei Zhang, 2023. "Family-friendly policy evolution: a bibliometric study," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    7. Hugo Baier-Fuentes & José M. Merigó & José Ernesto Amorós & Magaly Gaviria-Marín, 2019. "International entrepreneurship: a bibliometric overview," International Entrepreneurship and Management Journal, Springer, vol. 15(2), pages 385-429, June.
    8. Meen Chul Kim & Yongjun Zhu & Chaomei Chen, 2016. "How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 123-165, April.
    9. M. Isabel Diéguez-Castrillón & Ana Gueimonde-Canto & Nuria Rodríguez-López, 2022. "Sustainability indicators for tourism destinations: bibliometric analysis and proposed research agenda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11548-11575, October.
    10. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    11. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    12. Antonio-José Moreno-Guerrero & María Elena Parra-González & Jesús López-Belmonte & Adrián Segura-Robles, 2022. "Science mapping analysis of “cultural” in web of science (1908–2019)," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 239-257, February.
    13. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    14. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    15. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    16. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    17. Jerome K. Vanclay, 2012. "Impact factor: outdated artefact or stepping-stone to journal certification?," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 211-238, August.
    18. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    19. Marie Katsurai & Shunsuke Ono, 2019. "TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1583-1598, December.
    20. Chengliang Liu & Qinchang Gui, 2016. "Mapping intellectual structures and dynamics of transport geography research: a scientometric overview from 1982 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 159-184, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:15:y:2016:i:04:n:s0219649216500441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.