IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v10y2016i2p487-502.html
   My bibliography  Save this article

Using network science and text analytics to produce surveys in a scientific topic

Author

Listed:
  • Silva, Filipi N.
  • Amancio, Diego R.
  • Bardosova, Maria
  • Costa, Luciano da F.
  • Oliveira, Osvaldo N.

Abstract

The use of science to understand its own structure is becoming popular, but understanding the organization of knowledge areas is still limited because some patterns are only discoverable with proper computational treatment of large-scale datasets. In this paper, we introduce a framework to combine network-based methodologies and text analytics to construct the taxonomy of science fields. The methodology is illustrated with application to two topics: complex networks (CN) and photonic crystals (PC). We built citation networks using data from the Web of Science and used a community detection algorithm for partitioning to obtain science maps for the two topics. We also created an importance index for text analytics, which is employed to extract keywords that define the communities and, combined with network topology metrics, to generate dendrograms of relatedness among subtopics. Interesting patterns emerging from the analysis included identification of two well-defined communities in PC area, which is consistent with the known existence of two distinct communities of researchers in the area: telecommunication engineers and physicists. With the methodology, it was also possible to assess the interdisciplinary nature and time evolution of subtopics defined by the keywords. The automatic tools described here are potentially useful not only to provide an overview of scientific areas but also to assist scientists in performing systematic research on a specific topic.

Suggested Citation

  • Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
  • Handle: RePEc:eee:infome:v:10:y:2016:i:2:p:487-502
    DOI: 10.1016/j.joi.2016.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157715301966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2016.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carretero-Campos, C. & Bernaola-Galván, P. & Coronado, A.V. & Carpena, P., 2013. "Improving statistical keyword detection in short texts: Entropic and clustering approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1481-1492.
    2. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    3. van Eck, Nees Jan & Waltman, Ludo, 2014. "CitNetExplorer: A new software tool for analyzing and visualizing citation networks," Journal of Informetrics, Elsevier, vol. 8(4), pages 802-823.
    4. Yan, Xiangbin & Zhai, Li & Fan, Weiguo, 2013. "C-index: A weighted network node centrality measure for collaboration competence," Journal of Informetrics, Elsevier, vol. 7(1), pages 223-239.
    5. D. R. Amancio & M. G. V. Nunes & O. N. Oliveira & L. F. Costa, 2012. "Using complex networks concepts to assess approaches for citations in scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 827-842, June.
    6. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    7. Diego Raphael Amancio, 2015. "Comparing the topological properties of real and artificially generated scientific manuscripts," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1763-1779, December.
    8. Amancio, Diego R. & Nunes, Maria G.V. & Oliveira, Osvaldo N. & Costa, Luciano da F., 2012. "Extractive summarization using complex networks and syntactic dependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1855-1864.
    9. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    10. Samuel Donovan, 2008. "Big data: teaching must evolve to keep up with advances," Nature, Nature, vol. 455(7212), pages 461-461, September.
    11. Silva, F.N. & Rodrigues, F.A. & Oliveira, O.N. & da F. Costa, L., 2013. "Quantifying the interdisciplinarity of scientific journals and fields," Journal of Informetrics, Elsevier, vol. 7(2), pages 469-477.
    12. Viana, Matheus Palhares & Travençolo, Bruno A.N. & Tanck, Esther & Costa, Luciano da Fontoura, 2010. "Characterizing topological and dynamical properties of complex networks without border effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1771-1778.
    13. Cathelijn J. F. Waaijer & Cornelis A. Bochove & Nees Jan Eck, 2011. "On the map: Nature and Science editorials," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 99-112, January.
    14. Li, Jianyu & Zhou, Jie & Luo, Xiaoyue & Yang, Zhanxin, 2012. "Chinese lexical networks: The structure, function and formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5254-5263.
    15. Diego Raphael Amancio, 2015. "A Complex Network Approach to Stylometry," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    16. Loet Leydesdorff & Ismael Rafols & Chaomei Chen, 2013. "Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal–journal citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(12), pages 2573-2586, December.
    17. Tsung Teng Chen, 2012. "The development and empirical study of a literature review aiding system," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 105-116, July.
    18. Kevin W. Boyack & Richard Klavans, 2014. "Creation of a highly detailed, dynamic, global model and map of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 670-685, April.
    19. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    20. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    21. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    22. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    23. E. A. Leicht & G. Clarkson & K. Shedden & M. E.J. Newman, 2007. "Large-scale structure of time evolving citation networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 59(1), pages 75-83, September.
    24. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    2. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    3. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    4. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    5. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    6. Silva, F.N. & Rodrigues, F.A. & Oliveira, O.N. & da F. Costa, L., 2013. "Quantifying the interdisciplinarity of scientific journals and fields," Journal of Informetrics, Elsevier, vol. 7(2), pages 469-477.
    7. Kavitha Karunan & Hiran H. Lathabai & Thara Prabhakaran, 2017. "Discovering interdisciplinary interactions between two research fields using citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 335-367, October.
    8. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    9. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    10. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    11. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    12. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    13. Lorenzo Cassi & Wilfriedo Mescheba & Élisabeth Turckheim, 2014. "How to evaluate the degree of interdisciplinarity of an institution?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1871-1895, December.
    14. Sarin, Shikhar & Haon, Christophe & Belkhouja, Mustapha & Mas-Tur, Alicia & Roig-Tierno, Norat & Sego, Trina & Porter, Alan & Merigó, José M. & Carley, Stephen, 2020. "Uncovering the knowledge flows and intellectual structures of research in Technological Forecasting and Social Change: A journey through history," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "Hybrid self-optimized clustering model based on citation links and textual features to detect research topics," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    16. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    17. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    19. Zehra Taşkın & Arsev U. Aydinoglu, 2015. "Collaborative interdisciplinary astrobiology research: a bibliometric study of the NASA Astrobiology Institute," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1003-1022, June.
    20. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:2:p:487-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.