Bayesian influence analysis: a geometric approach
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Niansheng Tang & Sy-Miin Chow & Joseph G. Ibrahim & Hongtu Zhu, 2017. "Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 875-903, December.
- Tang, Niansheng & Wu, Ying & Chen, Dan, 2018. "Semiparametric Bayesian analysis of transformation linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 225-240.
- Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.
- Tsionas, Mike G., 2018. "Bayesian local influence analysis: With an application to stochastic frontiers," Economics Letters, Elsevier, vol. 165(C), pages 54-57.
- Indranil Ghosh & Kathleen Fleming, 2022. "On the Robustness and Sensitivity of Several Nonparametric Estimators via the Influence Curve Measure: A Brief Study," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
- Yuanyuan Ju & Yan Yang & Mingxing Hu & Lin Dai & Liucang Wu, 2022. "Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
- Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
- Ouyang, Ming & Yan, Xiaodong & Chen, Ji & Tang, Niansheng & Song, Xinyuan, 2017. "Bayesian local influence of semiparametric structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 102-115.
- Ming Ouyang & Xinyuan Song, 2020. "Bayesian Local Influence of Generalized Failure Time Models with Latent Variables and Multivariate Censored Data," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 298-316, July.
- Tang, Nian-Sheng & Duan, Xing-De, 2014. "Bayesian influence analysis of generalized partial linear mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 86-99.
- Abhijoy Saha & Sebastian Kurtek, 2019. "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 104-143, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:307-323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.