IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v41y2012i2p294-324.html
   My bibliography  Save this article

A Comparison of Bayes Factor Approximation Methods Including Two New Methods

Author

Listed:
  • Kenneth A. Bollen
  • Surajit Ray
  • Jane Zavisca
  • Jeffrey J. Harden

Abstract

Bayes factors (BFs) play an important role in comparing the fit of statistical models. However, computational limitations or lack of an appropriate prior sometimes prevent researchers from using exact BFs. Instead, it is approximated, often using the Bayesian Information Criterion (BIC) or a variant of BIC. The authors provide a comparison of several BF approximations, including two new approximations, the Scaled Unit Information Prior Bayesian Information Criterion (SPBIC) and Information matrix-based Bayesian Information Criterion (IBIC). The SPBIC uses a scaled unit information prior that is more general than the BIC’s unit information prior, and the IBIC utilizes more terms of approximation than the BIC. Through simulation, the authors show that several measures perform well in large samples, that performance declines in smaller samples, and that SPBIC and IBIC provide improvement to existing measures under some conditions, including small sample sizes. The authors illustrate the use of the fit measures with the crime data of Ehrlich and then conclude with recommendations for researchers.

Suggested Citation

  • Kenneth A. Bollen & Surajit Ray & Jane Zavisca & Jeffrey J. Harden, 2012. "A Comparison of Bayes Factor Approximation Methods Including Two New Methods," Sociological Methods & Research, , vol. 41(2), pages 294-324, May.
  • Handle: RePEc:sae:somere:v:41:y:2012:i:2:p:294-324
    DOI: 10.1177/0049124112452393
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124112452393
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124112452393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ehrlich, Isaac, 1973. "Participation in Illegitimate Activities: A Theoretical and Empirical Investigation," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 521-565, May-June.
    2. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    5. Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    2. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    3. Abhijoy Saha & Sebastian Kurtek, 2019. "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 104-143, February.
    4. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    5. Lee, Kuo-Jung & Feldkircher, Martin & Chen, Yi-Chi, 2021. "Variable selection in finite mixture of regression models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    6. Saverio Ranciati & Giuliano Galimberti & Gabriele Soffritti, 2019. "Bayesian variable selection in linear regression models with non-normal errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 323-358, June.
    7. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    8. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. M. Martin Boyer, 2007. "Resistance (to Fraud) Is Futile," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 461-492, June.
    10. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    11. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    12. Kerri Brick & Martine Visser & Justine Burns, 2012. "Risk Aversion: Experimental Evidence from South African Fishing Communities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 133-152.
    13. Entorf, Horst & Spengler, Hannes, 2000. "Socioeconomic and demographic factors of crime in Germany: Evidence from panel data of the German states," International Review of Law and Economics, Elsevier, vol. 20(1), pages 75-106, March.
    14. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    15. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    16. Jack Hirshleifer & Eric Rasmusen, 1992. "Are Equilibrium Strategies Unaffected by Incentives?," Journal of Theoretical Politics, , vol. 4(3), pages 353-367, July.
    17. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    18. Takuma Kunieda & Masashi Takahashi, 2022. "Inequality and institutional quality in a growth model," Evolutionary and Institutional Economics Review, Springer, vol. 19(1), pages 189-213, April.
    19. Milo Bianchi & Paolo Buonanno & Paolo Pinotti, 2012. "Do Immigrants Cause Crime?," Journal of the European Economic Association, European Economic Association, vol. 10(6), pages 1318-1347, December.
    20. Alan B. Krueger, 2002. "Inequality, Too Much of a Good Thing," Working Papers 845, Princeton University, Department of Economics, Industrial Relations Section..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:41:y:2012:i:2:p:294-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.