IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i1p9-24.html
   My bibliography  Save this article

Global sensitivity analysis in epidemiological modeling

Author

Listed:
  • Lu, Xuefei
  • Borgonovo, Emanuele

Abstract

Operations researchers worldwide rely extensively on quantitative simulations to model alternative aspects of the COVID-19 pandemic. Proper uncertainty quantification and sensitivity analysis are fundamental to enrich the modeling process and communicate correctly informed insights to decision-makers. We develop a methodology to obtain insights on key uncertainty drivers, trend analysis and interaction quantification through an innovative combination of probabilistic sensitivity techniques and machine learning tools. We illustrate the approach by applying it to a representative of the family of susceptible-infectious-recovered (SIR) models recently used in the context of the COVID-19 pandemic. We focus on data of the early pandemic progression in Italy and the United States (the U.S.). We perform the analysis for both cases of correlated and uncorrelated inputs. Results show that quarantine rate and intervention time are the key uncertainty drivers, have opposite effects on the number of total infected individuals and are involved in the most relevant interactions.

Suggested Citation

  • Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:9-24
    DOI: 10.1016/j.ejor.2021.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    2. Shamsi G., N. & Ali Torabi, S. & Shakouri G., H., 2018. "An option contract for vaccine procurement using the SIR epidemic model," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1122-1140.
    3. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    4. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    5. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    6. Rachaniotis, Nikolaos P. & Dasaklis, Tom K. & Pappis, Costas P., 2012. "A deterministic resource scheduling model in epidemic control: A case study," European Journal of Operational Research, Elsevier, vol. 216(1), pages 225-231.
    7. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    8. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    9. Manel Baucells & Emanuele Borgonovo, 2013. "Invariant Probabilistic Sensitivity Analysis," Management Science, INFORMS, vol. 59(11), pages 2536-2549, November.
    10. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    11. Ted G. Eschenbach, 1992. "Spiderplots versus Tornado Diagrams for Sensitivity Analysis," Interfaces, INFORMS, vol. 22(6), pages 40-46, December.
    12. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    13. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    14. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    15. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    16. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    17. Serina Chang & Emma Pierson & Pang Wei Koh & Jaline Gerardin & Beth Redbird & David Grusky & Jure Leskovec, 2021. "Mobility network models of COVID-19 explain inequities and inform reopening," Nature, Nature, vol. 589(7840), pages 82-87, January.
    18. Duncan A. Robertson, 2019. "Spatial Transmission Models: A Taxonomy and Framework," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 225-243, January.
    19. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    20. Anton Pichler & Marco Pangallo & R. Maria del Rio-Chanona & Franc{c}ois Lafond & J. Doyne Farmer, 2020. "Production networks and epidemic spreading: How to restart the UK economy?," Papers 2005.10585, arXiv.org.
    21. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    22. Ronald A. Howard, 1988. "Decision Analysis: Practice and Promise," Management Science, INFORMS, vol. 34(6), pages 679-695, June.
    23. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    24. Dottori, M. & Fabricius, G., 2015. "SIR model on a dynamical network and the endemic state of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 25-35.
    25. Alexanderian, Alen & Gremaud, Pierre A. & Smith, Ralph C., 2020. "Variance-based sensitivity analysis for time-dependent processes," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    26. Elaine O Nsoesie & Richard J Beckman & Madhav V Marathe, 2012. "Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza Epidemics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    27. Dunson, David B., 2018. "Statistics in the big data era: Failures of the machine," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 4-9.
    28. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    29. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    30. Radboud J. Duintjer Tebbens & Kimberly M. Thompson, 2009. "Priority Shifting and the Dynamics of Managing Eradicable Infectious Diseases," Management Science, INFORMS, vol. 55(4), pages 650-663, April.
    31. Berman, Oded & Gavious, Arieh & Menezes, Mozart B.C., 2012. "Optimal response against bioterror attack on airport terminal," European Journal of Operational Research, Elsevier, vol. 219(2), pages 415-424.
    32. Andrea Saltelli & Gabriele Bammer & Isabelle Bruno & Erica Charters & Monica Di Fiore & Emmanuel Didier & Wendy Nelson Espeland & John Kay & Samuele Lo Piano & Deborah Mayo & Roger Pielke Jr & Tommaso, 2020. "Five ways to ensure that models serve society: a manifesto," Nature, Nature, vol. 582(7813), pages 482-484, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chuanbiao & Liu, Ruiying & Wang, Yan, 2023. "The spread dynamics model of the interaction between rumors and derivative rumors in emergencies under the control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    3. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    4. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    5. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    6. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    8. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    9. Awad, Mahmoud, 2017. "Analyzing sensitivity measures using moment-matching technique," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 90-99.
    10. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    11. Emanuele Borgonovo & Marco Pangallo & Jan Rivkin & Leonardo Rizzo & Nicolaj Siggelkow, 2022. "Sensitivity analysis of agent-based models: a new protocol," Computational and Mathematical Organization Theory, Springer, vol. 28(1), pages 52-94, March.
    12. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    13. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    14. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    15. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    16. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    17. Katja Schilling & Daniel Bauer & Marcus C. Christiansen & Alexander Kling, 2020. "Decomposing Dynamic Risks into Risk Components," Management Science, INFORMS, vol. 66(12), pages 5738-5756, December.
    18. Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    19. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:9-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.