IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v33y2014i1-4p289-304.html
   My bibliography  Save this article

On Some Optimal Bayesian Nonparametric Rules for Estimating Distribution Functions

Author

Listed:
  • Fabrizio Ruggeri

Abstract

In this paper, we present a novel approach to estimating distribution functions, which combines ideas from Bayesian nonparametric inference, decision theory and robustness. Given a sample from a Dirichlet process on the space (𝒳, A), with parameter η in a class of measures, the sampling distribution function is estimated according to some optimality criteria (mainly minimax and regret), when a quadratic loss function is assumed. Estimates are then compared in two examples: one with simulated data and one with gas escapes data in a city network.

Suggested Citation

  • Fabrizio Ruggeri, 2014. "On Some Optimal Bayesian Nonparametric Rules for Estimating Distribution Functions," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 289-304, June.
  • Handle: RePEc:taf:emetrv:v:33:y:2014:i:1-4:p:289-304
    DOI: 10.1080/07474938.2013.807183
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2013.807183
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2013.807183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Stephen G. Walker & Paul Damien & PuruShottam W. Laud & Adrian F. M. Smith, 1999. "Bayesian Nonparametric Inference for Random Distributions and Related Functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 485-527.
    3. Antonio Pievatolo & Fabrizio Ruggeri, 2004. "Bayesian reliability analysis of complex repairable systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 20(3), pages 253-264, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Karimnezhad & Mahmoud Zarepour, 2020. "A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 321-346, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhijoy Saha & Sebastian Kurtek, 2019. "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 104-143, February.
    2. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    3. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    4. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    5. Christopher A. Bush & Juhee Lee & Steven N. MacEachern, 2010. "Minimally informative prior distributions for non‐parametric Bayesian analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 253-268, March.
    6. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
    7. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    8. John J. McCall, 2004. "Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov," Metroeconomica, Wiley Blackwell, vol. 55(2‐3), pages 195-218, May.
    9. Dragon Yongjun Tang, 2014. "Potential losses from incorporating return predictability into portfolio allocation," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 35-45, February.
    10. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    11. Ravishanker, Nalini & Liu, Zhaohui & Ray, Bonnie K., 2008. "NHPP models with Markov switching for software reliability," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3988-3999, April.
    12. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    13. Antonio Pievatolo & Fabrizio Ruggeri & Refik Soyer & Simon Wilson, 2021. "Decisions in Risk and Reliability: An Explanatory Perspective," Stats, MDPI, vol. 4(2), pages 1-23, March.
    14. Gómez-Villegas, Miguel A. & Sanz, Luis, 2000. "[var epsilon]-contaminated priors in testing point null hypothesis: a procedure to determine the prior probability," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 53-60, March.
    15. Luis G. León-Novelo & Peter Müller & Wadih Arap & Mikhail Kolonin & Jessica Sun & Renata Pasqualini & Kim-Anh Do, 2013. "Semiparametric Bayesian Inference for Phage Display Data," Biometrics, The International Biometric Society, vol. 69(1), pages 174-183, March.
    16. Didier Dubois, 2010. "Representation, Propagation, and Decision Issues in Risk Analysis Under Incomplete Probabilistic Information," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 361-368, March.
    17. Igor Kopylov, 2016. "Subjective probability, confidence, and Bayesian updating," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(4), pages 635-658, October.
    18. Pankaj Sinha & Ashok Bansal, 2008. "Bayesian optimization analysis with ML-II ε-contaminated prior," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 203-211.
    19. Lars P. Hansen & Thomas J. Sargent, 2016. "Sets of Models and Prices of Uncertainty," NBER Working Papers 22000, National Bureau of Economic Research, Inc.
    20. repec:jss:jstsof:40:i05 is not listed on IDEAS
    21. Hansen, Lars Peter & Sargent, Thomas J., 2021. "Macroeconomic uncertainty prices when beliefs are tenuous," Journal of Econometrics, Elsevier, vol. 223(1), pages 222-250.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:33:y:2014:i:1-4:p:289-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.