IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2016-121-2.html
   My bibliography  Save this article

A Psychologically-Motivated Model of Opinion Change with Applications to American Politics

Author

Abstract

Agent-based models are versatile tools for studying how societal opinion change, including political polarization and cultural diffusion, emerges from individual behavior. This study expands agents' psychological realism using empirically-motivated rules governing interpersonal influence, commitment to previous beliefs, and conformity in social contexts. Computational experiments establish that these extensions produce three novel results: (a) sustained strong diversity of opinions within the population, (b) opinion subcultures, and (c) pluralistic ignorance. These phenomena arise from a combination of agents' intolerance, susceptibility and conformity, with extremist agents and social networks playing important roles. The distribution and dynamics of simulated opinions reproduce two empirical datasets on Americans' political opinions.

Suggested Citation

  • Peter Duggins, 2017. "A Psychologically-Motivated Model of Opinion Change with Applications to American Politics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-13.
  • Handle: RePEc:jas:jasssj:2016-121-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/20/1/13/13.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Banisch & Eckehard Olbrich, 2021. "An Argument Communication Model of Polarization and Ideological Alignment," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(1), pages 1-1.
    2. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Cui, Peng-Bi, 2023. "Exploring the foundation of social diversity and coherence with a novel attraction–repulsion model framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    4. Stern, Samuel & Livan, Giacomo, 2021. "The impact of noise and topology on opinion dynamics in social networks," LSE Research Online Documents on Economics 113424, London School of Economics and Political Science, LSE Library.
    5. Carpentras, Dino & Quayle, Michael, 2022. "Propagation of measurement error in opinion dynamics models: The case of the Deffuant model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    7. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    8. Jan-Philipp Fränken & Toby Pilditch, 2021. "Cascades Across Networks Are Sufficient for the Formation of Echo Chambers: An Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(3), pages 1-1.
    9. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    10. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    11. Thomas Feliciani & Andreas Flache & Michael Mäs, 2021. "Persuasion without polarization? Modelling persuasive argument communication in teams with strong faultlines," Computational and Mathematical Organization Theory, Springer, vol. 27(1), pages 61-92, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2016-121-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.