IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i16p2945-2955.html
   My bibliography  Save this article

Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism

Author

Listed:
  • Kurmyshev, Evguenii
  • Juárez, Héctor A.
  • González-Silva, Ricardo A.

Abstract

Bounded confidence models of opinion dynamics in social networks have been actively studied in recent years, in particular, opinion formation and extremism propagation along with other aspects of social dynamics. In this work, after an analysis of limitations of the Deffuant–Weisbuch (DW) bounded confidence, relative agreement model, we propose the mixed model that takes into account two psychological types of individuals. Concord agents (C-agents) are friendly people; they interact in a way that their opinions always get closer. Agents of the other psychological type show partial antagonism in their interaction (PA-agents). Opinion dynamics in heterogeneous social groups, consisting of agents of the two types, was studied on different social networks: Erdös–Rényi random graphs, small-world networks and complete graphs. Limit cases of the mixed model, pure C- and PA-societies, were also studied. We found that group opinion formation is, qualitatively, almost independent of the topology of networks used in this work. Opinion fragmentation, polarization and consensus are observed in the mixed model at different proportions of PA- and C-agents, depending on the value of initial opinion tolerance of agents. As for the opinion formation and arising of “dissidents”, the opinion dynamics of the C-agents society was found to be similar to that of the DW model, except for the rate of opinion convergence. Nevertheless, mixed societies showed dynamics and bifurcation patterns notably different to those of the DW model. The influence of biased initial conditions over opinion formation in heterogeneous social groups was also studied versus the initial value of opinion uncertainty, varying the proportion of the PA- to C-agents. Bifurcation diagrams showed an impressive evolution of collective opinion, in particular, radical changes of left to right consensus or vice versa at an opinion uncertainty value equal to 0.7 in the model with the PA/C mixture of population near 50/50.

Suggested Citation

  • Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:16:p:2945-2955
    DOI: 10.1016/j.physa.2011.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111002706
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galam, Serge, 1996. "Fragmentation versus stability in bimodal coalitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 230(1), pages 174-188.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    4. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    5. Laurent Salzarulo, 2006. "A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-13.
    6. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    7. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    8. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    9. Guillaume Deffuant, 2006. "Comparing Extremism Propagation Patterns in Continuous Opinion Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-8.
    10. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    11. S. Huet & G. Deffuant & W. Jager, 2008. "A Rejection Mechanism In 2d Bounded Confidence Provides More Conformity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 529-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    2. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    4. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    5. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    6. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2017. "False Beliefs in Unreliable Knowledge Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 275-295.
    7. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    8. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    9. Zhu, Hou & Hu, Bin, 2018. "Impact of information on public opinion reversal—An agent based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 578-587.
    10. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    11. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    12. Huang, Chuanchao & Hu, Bin & Jiang, Guoyin & Yang, Ruixian, 2016. "Modeling of agent-based complex network under cyber-violence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 399-411.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    2. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    3. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    5. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    6. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    7. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    8. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    9. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    10. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    11. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    13. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    14. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    16. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    17. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    18. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    19. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    20. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:16:p:2945-2955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.