IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v45y2011i6p1415-1427.html
   My bibliography  Save this article

A multivariate method for analyzing and improving the use of student evaluation of teaching questionnaires: a case study

Author

Listed:
  • Mónica Martínez-Gómez
  • Jose Sierra
  • José Jabaloyes
  • Manuel Zarzo

Abstract

No abstract is available for this item.

Suggested Citation

  • Mónica Martínez-Gómez & Jose Sierra & José Jabaloyes & Manuel Zarzo, 2011. "A multivariate method for analyzing and improving the use of student evaluation of teaching questionnaires: a case study," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(6), pages 1415-1427, October.
  • Handle: RePEc:spr:qualqt:v:45:y:2011:i:6:p:1415-1427
    DOI: 10.1007/s11135-010-9345-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-010-9345-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-010-9345-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert W. Marsh & John Hattie, 2002. "The Relation between Research Productivity and Teaching Effectiveness," The Journal of Higher Education, Taylor & Francis Journals, vol. 73(5), pages 603-641, September.
    2. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    3. Rainer Göb & Christopher McCollin & Maria Ramalhoto, 2007. "Ordinal Methodology in the Analysis of Likert Scales," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(5), pages 601-626, October.
    4. Michelle Lalla & Gisella Facchinetti & Giovanni Mastroleo, 2005. "Ordinal scales and fuzzy set systems to measure agreement: An application to the evaluation of teaching activity," Quality & Quantity: International Journal of Methodology, Springer, vol. 38(5), pages 577-601, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amalia Vanacore & Maria Sole Pellegrino, 2019. "How Reliable are Students’ Evaluations of Teaching (SETs)? A Study to Test Student’s Reproducibility and Repeatability," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 77-89, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    4. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    5. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    6. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    7. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    8. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    9. Eunae Jin & Woojong Lee & Danya Kim, 2018. "Does Resident Participation in an Urban Regeneration Project Improve Neighborhood Satisfaction: A Case Study of “Amichojang” in Busan, South Korea," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    10. Hoyeop Lee & Jueun Kwak & Min Song & Chang Ouk Kim, 2015. "Coherence analysis of research and education using topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1119-1137, February.
    11. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    12. Besancenot, Damien & Faria, Joao Ricardo & Vranceanu, Radu, 2009. "Why business schools do so much research: A signaling explanation," Research Policy, Elsevier, vol. 38(7), pages 1093-1101, September.
    13. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    14. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    15. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    16. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Edward Kozłowski & Anna Borucka & Andrzej Świderski & Przemysław Skoczyński, 2021. "Classification Trees in the Assessment of the Road–Railway Accidents Mortality," Energies, MDPI, vol. 14(12), pages 1-15, June.
    18. Javad Hassannataj Joloudari & Edris Hassannataj Joloudari & Hamid Saadatfar & Mohammad Ghasemigol & Seyyed Mohammad Razavi & Amir Mosavi & Narjes Nabipour & Shahaboddin Shamshirband & Laszlo Nadai, 2020. "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model," IJERPH, MDPI, vol. 17(3), pages 1-24, January.
    19. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    20. Catherine P. Slade & Saundra J. Ribando & C. Kevin Fortner, 2016. "Faculty research following merger: a job stress and social identity theory perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 71-89, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:45:y:2011:i:6:p:1415-1427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.