IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p731-d312312.html
   My bibliography  Save this article

Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model

Author

Listed:
  • Javad Hassannataj Joloudari

    (Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand 97175/615, Iran)

  • Edris Hassannataj Joloudari

    (Department of Nursing, School of Nursing and Allied Medical Sciences, Maragheh Faculty of Medical Sciences, Maragheh, Iran)

  • Hamid Saadatfar

    (Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand 97175/615, Iran)

  • Mohammad Ghasemigol

    (Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand 97175/615, Iran)

  • Seyyed Mohammad Razavi

    (Department of Electronics, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand 9717434765, Iran)

  • Amir Mosavi

    (Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary
    Institute of Structural Mechanics, Bauhaus Universität-Weimar, D-99423 Weimar, Germany
    Department of Mathematics and Informatics, J. Selye University, 94501 Komarno, Slovakia
    Faculty of Health, Queensland University of Technology, 130 Victoria Park Road, Queensland 4059, Australia)

  • Narjes Nabipour

    (Department Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Laszlo Nadai

    (Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary)

Abstract

Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.

Suggested Citation

  • Javad Hassannataj Joloudari & Edris Hassannataj Joloudari & Hamid Saadatfar & Mohammad Ghasemigol & Seyyed Mohammad Razavi & Amir Mosavi & Narjes Nabipour & Shahaboddin Shamshirband & Laszlo Nadai, 2020. "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model," IJERPH, MDPI, vol. 17(3), pages 1-24, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:731-:d:312312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haewon Byeon, 2020. "Is the Random Forest Algorithm Suitable for Predicting Parkinson’s Disease with Mild Cognitive Impairment out of Parkinson’s Disease with Normal Cognition?," IJERPH, MDPI, vol. 17(7), pages 1-14, April.
    2. Sadegh Fathi & Hassan Sajadzadeh & Faezeh Mohammadi Sheshkal & Farshid Aram & Gergo Pinter & Imre Felde & Amir Mosavi, 2020. "The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health," IJERPH, MDPI, vol. 17(7), pages 1-29, March.
    3. Alaa M. Elsayad & Ahmed M. Nassef & Mujahed Al-Dhaifallah & Khaled A. Elsayad, 2020. "Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees," IJERPH, MDPI, vol. 17(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    4. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    5. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    6. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    7. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    8. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    9. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    10. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    11. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    12. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    13. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    14. Edward Kozłowski & Anna Borucka & Andrzej Świderski & Przemysław Skoczyński, 2021. "Classification Trees in the Assessment of the Road–Railway Accidents Mortality," Energies, MDPI, vol. 14(12), pages 1-15, June.
    15. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    16. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Jonathan Zufferey, 2016. "Investigating the migrant mortality advantage at the intersections of social stratification in Switzerland," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(32), pages 899-926.
    18. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
    19. H Seol & H Lee & S Kim & Y Park, 2008. "The impact of information technology on organizational efficiency in public services: a DEA-based DT approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 231-238, February.
    20. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:731-:d:312312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.