IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v84y2019i2d10.1007_s11336-018-9645-6.html
   My bibliography  Save this article

On a Generalization of Local Independence in Item Response Theory Based on Knowledge Space Theory

Author

Listed:
  • Stefano Noventa

    (Universität Tübingen)

  • Andrea Spoto

    (University of Padova)

  • Jürgen Heller

    (Universität Tübingen)

  • Augustin Kelava

    (Universität Tübingen)

Abstract

Knowledge space theory (KST) structures are introduced within item response theory (IRT) as a possible way to model local dependence between items. The aim of this paper is threefold: firstly, to generalize the usual characterization of local independence without introducing new parameters; secondly, to merge the information provided by the IRT and KST perspectives; and thirdly, to contribute to the literature that bridges continuous and discrete theories of assessment. In detail, connections are established between the KST simple learning model (SLM) and the IRT General Graded Response Model, and between the KST Basic Local Independence Model and IRT models in general. As a consequence, local independence is generalized to account for the existence of prerequisite relations between the items, IRT models become a subset of KST models, IRT likelihood functions can be generalized to broader families, and the issues of local dependence and dimensionality are partially disentangled. Models are discussed for both dichotomous and polytomous items and conclusions are drawn on their interpretation. Considerations on possible consequences in terms of model identifiability and estimation procedures are also provided.

Suggested Citation

  • Stefano Noventa & Andrea Spoto & Jürgen Heller & Augustin Kelava, 2019. "On a Generalization of Local Independence in Item Response Theory Based on Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 395-421, June.
  • Handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-9645-6
    DOI: 10.1007/s11336-018-9645-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9645-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9645-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fumiko Samejima, 1973. "A comment on Birnbaum's three-parameter logistic model in the latent trait theory," Psychometrika, Springer;The Psychometric Society, vol. 38(2), pages 221-233, June.
    2. Robert Jannarone, 1986. "Conjunctive item response theory kernels," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 357-373, September.
    3. Mark Wilson & Raymond Adams, 1995. "Rasch models for item bundles," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 181-198, June.
    4. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    5. Edward Ip, 2002. "Locally dependent latent trait model and the dutch identity revisited," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 367-386, September.
    6. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    7. Bas Hemker & L. Andries van der Ark & Klaas Sijtsma, 2001. "On measurement properties of continuation ratio models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 487-506, December.
    8. Fumiko Samejima, 1995. "Acceleration model in the heterogeneous case of the general graded response model," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 549-572, December.
    9. Hartmann Scheiblechner, 1995. "Isotonic ordinal probabilistic models (ISOP)," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 281-304, June.
    10. Johan Braeken & Francis Tuerlinckx & Paul Boeck, 2007. "Copula Functions for Residual Dependency," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 393-411, September.
    11. David Thissen & Lynne Steinberg, 1986. "A taxonomy of item response models," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 567-577, December.
    12. Paul Holland, 1981. "When are item response models consistent with observed data?," Psychometrika, Springer;The Psychometric Society, vol. 46(1), pages 79-92, March.
    13. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    14. Paul Rosenbaum, 1984. "Testing the conditional independence and monotonicity assumptions of item response theory," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 425-435, September.
    15. Hans Irtel, 1995. "An extension of the concept of specific objectivity," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 115-118, March.
    16. Wen-Hung Chen & David Thissen, 1997. "Local Dependence Indexes for Item Pairs Using Item Response Theory," Journal of Educational and Behavioral Statistics, , vol. 22(3), pages 265-289, September.
    17. Wim J. Linden & Michelle D. Barrett, 2016. "Linking Item Response Model Parameters," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 650-673, September.
    18. Stefano Noventa & Luca Stefanutti & Giulio Vidotto, 2014. "An Analysis of Item Response Theory and Rasch Models Based on the Most Probable Distribution Method," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 377-402, July.
    19. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    2. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    3. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    4. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    5. David Magis, 2015. "A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 96-105, February.
    6. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.
    7. Bas Hemker & L. Andries van der Ark & Klaas Sijtsma, 2001. "On measurement properties of continuation ratio models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 487-506, December.
    8. Cees Glas, 1999. "Modification indices for the 2-PL and the nominal response model," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 273-294, September.
    9. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
    10. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    11. Ligtvoet, R., 2015. "A test for using the sum score to obtain a stochastic ordering of subjects," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 136-139.
    12. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    13. repec:jss:jstsof:35:i12 is not listed on IDEAS
    14. Maydeu Olivares, Alberto & D'Zurilla, Thomas J. & Morera, Osvaldo, 1996. "Assessing measurement invariance in questionnaires within latent trait models using item response theory," DES - Working Papers. Statistics and Econometrics. WS 10456, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    16. Gerhard Tutz, 2022. "Item Response Thresholds Models: A General Class of Models for Varying Types of Items," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1238-1269, December.
    17. Rudy Ligtvoet & L. Ark & Wicher Bergsma & Klaas Sijtsma, 2011. "Polytomous Latent Scales for the Investigation of the Ordering of Items," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 200-216, April.
    18. Yuri Goegebeur & Paul Boeck & James Wollack & Allan Cohen, 2008. "A Speeded Item Response Model with Gradual Process Change," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 65-87, March.
    19. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    20. Svend Kreiner & Karl Christensen, 2011. "Item Screening in Graphical Loglinear Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 228-256, April.
    21. Michal Abrahamowicz & James Ramsay, 1992. "Multicategorical spline model for item response theory," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 5-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-9645-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.