IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v73y2008i4p595-624.html
   My bibliography  Save this article

Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data

Author

Listed:
  • Jimmy de la Torre
  • Jeffrey Douglas

Abstract

No abstract is available for this item.

Suggested Citation

  • Jimmy de la Torre & Jeffrey Douglas, 2008. "Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 595-624, December.
  • Handle: RePEc:spr:psycho:v:73:y:2008:i:4:p:595-624
    DOI: 10.1007/s11336-008-9063-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-008-9063-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-008-9063-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Curtis Tatsuoka, 2002. "Data analytic methods for latent partially ordered classification models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 337-350, July.
    2. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    3. Susan Embretson (Whitely), 1984. "A general latent trait model for response processes," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 175-186, June.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong-Yun Liu & Xiao-Feng You & Wen-Yi Wang & Shu-Liang Ding & Hua-Hua Chang, 2013. "The Development of Computerized Adaptive Testing with Cognitive Diagnosis for an English Achievement Test in China," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 152-172, July.
    2. Hans-Friedrich Köhn & Chia-Yi Chiu, 2018. "How to Build a Complete Q-Matrix for a Cognitively Diagnostic Test," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 273-299, July.
    3. Hans-Friedrich Köhn & Chia-Yi Chiu, 2017. "A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 112-132, March.
    4. Liu, Yaohui & Zhan, Peida & Fu, Yanbin & Chen, Qipeng & Man, Kaiwen & Luo, Yikun, 2023. "Using a multi-strategy eye-tracking psychometric model to measure intelligence and identify cognitive strategy in Raven's advanced progressive matrices," Intelligence, Elsevier, vol. 100(C).
    5. Steven Andrew Culpepper, 2019. "An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 921-940, December.
    6. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    7. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    8. Luca Stefanutti & Debora Chiusole & Pasquale Anselmi & Andrea Spoto, 2020. "Extending the Basic Local Independence Model to Polytomous Data," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 684-715, September.
    9. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    10. Yinghan Chen & Shiyu Wang, 2023. "Bayesian Estimation of Attribute Hierarchy for Cognitive Diagnosis Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 810-841, December.
    11. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
    12. Meng-Ta Chung & Shui-Lien Chen, 2021. "A Deterministic Learning Algorithm Estimating the Q-Matrix for Cognitive Diagnosis Models," Mathematics, MDPI, vol. 9(23), pages 1-11, November.
    13. Pasquale Anselmi & Egidio Robusto & Luca Stefanutti & Debora Chiusole, 2016. "An Upgrading Procedure for Adaptive Assessment of Knowledge," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 461-482, June.
    14. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen & Jeffrey Douglas, 2018. "Bayesian Estimation of the DINA Q matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 89-108, March.
    15. Pasquale Anselmi & Egidio Robusto & Luca Stefanutti, 2012. "Uncovering the Best Skill Multimap by Constraining the Error Probabilities of the Gain-Loss Model," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 763-781, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Chen & Tao Xin & Chun Wang & Hua-Hua Chang, 2012. "Online Calibration Methods for the DINA Model with Independent Attributes in CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 201-222, April.
    2. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    3. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    4. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    5. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    6. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    7. Elizabeth Ayers & Sophia Rabe-Hesketh & Rebecca Nugent, 2013. "Incorporating Student Covariates in Cognitive Diagnosis Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 195-224, July.
    8. Hong-Yun Liu & Xiao-Feng You & Wen-Yi Wang & Shu-Liang Ding & Hua-Hua Chang, 2013. "The Development of Computerized Adaptive Testing with Cognitive Diagnosis for an English Achievement Test in China," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 152-172, July.
    9. Chia-Yi Chiu & Jeffrey Douglas & Xiaodong Li, 2009. "Cluster Analysis for Cognitive Diagnosis: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 633-665, December.
    10. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
    11. Jianan Sun & Yunxiao Chen & Jingchen Liu & Zhiliang Ying & Tao Xin, 2016. "Latent Variable Selection for Multidimensional Item Response Theory Models via $$L_{1}$$ L 1 Regularization," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 921-939, December.
    12. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    13. Susan Embretson & Xiangdong Yang, 2013. "A Multicomponent Latent Trait Model for Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 14-36, January.
    14. Juntao Wang & Yuan Li, 2023. "DINA Model with Entropy Penalization," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    15. Peida Zhan & Hong Jiao & Kaiwen Man & Lijun Wang, 2019. "Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 473-503, August.
    16. Justin L. Kern & Steven Andrew Culpepper, 2020. "A Restricted Four-Parameter IRT Model: The Dyad Four-Parameter Normal Ogive (Dyad-4PNO) Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 575-599, September.
    17. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    18. Steven Andrew Culpepper & Yinghan Chen, 2019. "Development and Application of an Exploratory Reduced Reparameterized Unified Model," Journal of Educational and Behavioral Statistics, , vol. 44(1), pages 3-24, February.
    19. Wenchao Ma & Jimmy de la Torre, 2019. "Category-Level Model Selection for the Sequential G-DINA Model," Journal of Educational and Behavioral Statistics, , vol. 44(1), pages 45-77, February.
    20. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:73:y:2008:i:4:p:595-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.