IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v55y1990i3p477-494.html
   My bibliography  Save this article

Continuous and discrete latent structure models for item response data

Author

Listed:
  • Edward Haertel

Abstract

No abstract is available for this item.

Suggested Citation

  • Edward Haertel, 1990. "Continuous and discrete latent structure models for item response data," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 477-494, September.
  • Handle: RePEc:spr:psycho:v:55:y:1990:i:3:p:477-494
    DOI: 10.1007/BF02294762
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294762
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bengt Muthén, 1978. "Contributions to factor analysis of dichotomous variables," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 551-560, December.
    2. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    3. Geofferey Masters, 1985. "A comparison of latent trait and latent class analyses of Likert-type data," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 69-82, March.
    4. Noel Cressie & Paul Holland, 1983. "Characterizing the manifest probabilities of latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 129-141, March.
    5. Anders Christoffersson, 1975. "Factor analysis of dichotomized variables," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 5-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Reiser, 1996. "Analysis of residuals for the multionmial item response model," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 509-528, September.
    2. Yang Yixin & Lü Xin & Ma Jian & Qiao Han, 2014. "A Robust Factor Analysis Model for Dichotomous Data," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 437-450, October.
    3. Maydeu-Olivares, Albert, 2002. "Limited information estimation and testing of Thurstonian models for preference data," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 467-483, July.
    4. Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
    5. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    6. Ulf Böckenholt, 1990. "Multivariate thurstonian models," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 391-403, June.
    7. Beth Reboussin & Kung-Yee Liang, 1998. "An estimating equations approach for the LISCOMP model," Psychometrika, Springer;The Psychometric Society, vol. 63(2), pages 165-182, June.
    8. Wayne DeSarbo & Jaewun Cho, 1989. "A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 105-129, March.
    9. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    10. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    11. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    12. Mark Reiser & Karl F. Schuessler, 1991. "A Hierarchy for Some Latent Structure Models," Sociological Methods & Research, , vol. 19(4), pages 419-465, May.
    13. Jonas Moss & Steffen Grønneberg, 2023. "Partial Identification of Latent Correlations with Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 241-252, March.
    14. Albert Maydeu-Olivares, 2001. "Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 209-227, June.
    15. Kamel Jedidi & Wayne DeSarbo, 1991. "A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/J data," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 471-494, September.
    16. Bouguila, Nizar, 2010. "On multivariate binary data clustering and feature weighting," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 120-134, January.
    17. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    18. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    19. David J. Hessen, 2023. "Fitting and Testing Log-Linear Subpopulation Models with Known Support," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 917-939, September.
    20. Thum, Anna-Elisabeth, 2013. "Psychology in econometric models: conceptual and methodological foundations," MPRA Paper 52293, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:55:y:1990:i:3:p:477-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.