IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v75y2010i4p744-771.html
   My bibliography  Save this article

Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

Author

Listed:
  • Manshu Yang
  • Sy-Miin Chow

Abstract

No abstract is available for this item.

Suggested Citation

  • Manshu Yang & Sy-Miin Chow, 2010. "Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 744-771, December.
  • Handle: RePEc:spr:psycho:v:75:y:2010:i:4:p:744-771
    DOI: 10.1007/s11336-010-9176-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-010-9176-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-010-9176-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    3. Sylvia Frühwirth-Schnatter, 2001. "Fully Bayesian Analysis of Switching Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 31-49, March.
    4. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael D. Hunter, 2016. "As Good as GOLD: Gram–Schmidt Orthogonalization by Another Name," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 969-991, December.
    2. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    3. Daniel M. Smith & Theodore A. Walls, 2021. "Pursuing Collective Synchrony in Teams: A Regime-Switching Dynamic Factor Model of Speed Similarity in Soccer," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1016-1038, December.
    4. E. Hamaker & R. Grasman, 2012. "Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 400-422, April.
    5. Degras, David & Ting, Chee-Ming & Ombao, Hernando, 2022. "Markov-switching state-space models with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    7. Rosen, Karol & Angeles-Camacho, César & Elvira, Víctor & Guillén-Burguete, Servio Tulio, 2023. "Intra-hour photovoltaic forecasting through a time-varying Markov switching model," Energy, Elsevier, vol. 278(PB).
    8. Sy-Miin Chow & Lu Ou & Arridhana Ciptadi & Emily B. Prince & Dongjun You & Michael D. Hunter & James M. Rehg & Agata Rozga & Daniel S. Messinger, 2018. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 476-510, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    2. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    3. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    4. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    5. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    6. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    7. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    8. Berger, Tino & Pozzi, Lorenzo, 2013. "Measuring time-varying financial market integration: An unobserved components approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 463-473.
    9. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    10. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    11. Miguel Belmonte & Gary Koop, 2014. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 45-69, Emerald Group Publishing Limited.
    12. Francis Vitek, 2005. "An Unobserved Components Model of the Monetary Transmission Mechanism in a Small Open Economy," Macroeconomics 0512019, University Library of Munich, Germany, revised 06 Feb 2006.
    13. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    14. Malin Gardberg & Lorenzo Pozzi, 2022. "Aggregate consumption and wealth in the long run: The impact of financial liberalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 161-186, January.
    15. Justin Yifu Lin & Célestin Monga & Samuel Standaert, 2019. "The Inclusive Sustainable Transformation Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 47-80, May.
    16. repec:spo:wpmain:info:hdl:2441/2129 is not listed on IDEAS
    17. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, Department of Economics and Business Economics, Aarhus University.
    18. Jana Riedel, 2020. "On real interest rate convergence among G7 countries," Empirical Economics, Springer, vol. 59(2), pages 599-626, August.
    19. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    20. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    21. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:75:y:2010:i:4:p:744-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.