IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i2d10.1007_s11336-018-9605-1.html
   My bibliography  Save this article

Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching

Author

Listed:
  • Sy-Miin Chow

    (Pennsylvania State University)

  • Lu Ou

    (Pennsylvania State University)

  • Arridhana Ciptadi

    (Georgia Institute of Technology)

  • Emily B. Prince

    (University of Miami)

  • Dongjun You

    (Pennsylvania State University)

  • Michael D. Hunter

    (University of Oklahoma Health Sciences Center)

  • James M. Rehg

    (Georgia Institute of Technology)

  • Agata Rozga

    (Georgia Institute of Technology)

  • Daniel S. Messinger

    (University of Miami)

Abstract

A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of $$n= 29$$ n = 29 mother–infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children’s tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.

Suggested Citation

  • Sy-Miin Chow & Lu Ou & Arridhana Ciptadi & Emily B. Prince & Dongjun You & Michael D. Hunter & James M. Rehg & Agata Rozga & Daniel S. Messinger, 2018. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 476-510, June.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:2:d:10.1007_s11336-018-9605-1
    DOI: 10.1007/s11336-018-9605-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9605-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9605-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sy-Miin Chow & Zhaohua Lu & Andrew Sherwood & Hongtu Zhu, 2016. "Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 102-134, March.
    2. Manshu Yang & Sy-Miin Chow, 2010. "Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 744-771, December.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
    5. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    6. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    7. Steven Boker & Michael Neale & Hermine Maes & Michael Wilde & Michael Spiegel & Timothy Brick & Jeffrey Spies & Ryne Estabrook & Sarah Kenny & Timothy Bates & Paras Mehta & John Fox, 2011. "OpenMx: An Open Source Extended Structural Equation Modeling Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 306-317, April.
    8. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Johan Oud & Robert Jansen, 2000. "Continuous time state space modeling of panel data by means of sem," Psychometrika, Springer;The Psychometric Society, vol. 65(2), pages 199-215, June.
    11. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    2. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    3. Sy-Miin Chow & Zhaohua Lu & Andrew Sherwood & Hongtu Zhu, 2016. "Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 102-134, March.
    4. Daniel M. Smith & Theodore A. Walls, 2021. "Pursuing Collective Synchrony in Teams: A Regime-Switching Dynamic Factor Model of Speed Similarity in Soccer," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1016-1038, December.
    5. E. Hamaker & R. Grasman, 2012. "Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 400-422, April.
    6. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    7. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    8. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    9. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    10. Nigar Hashimzade & Oleg Kirsanov & Tatiana Kirsanova & Junior Maih, 2024. "On Bayesian Filtering for Markov Regime Switching Models," Papers 2402.08051, arXiv.org.
    11. Monica Billio & Roberto Casarin, 2008. "Identifying Business Cycle Turning Points with Sequential Monte Carlo Methods," Working Papers 0815, University of Brescia, Department of Economics.
    12. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    13. Rokas Gylys & Jonas Šiaulys, 2020. "Estimation of Uncertainty in Mortality Projections Using State-Space Lee-Carter Model," Mathematics, MDPI, vol. 8(7), pages 1-23, June.
    14. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    15. Tatsuma Wada & Pierre Perron, 2005. "Trend and Cycles: A New Approach and Explanations of Some Old Puzzles," Computing in Economics and Finance 2005 252, Society for Computational Economics.
    16. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.
    17. Rosen, Karol & Angeles-Camacho, César & Elvira, Víctor & Guillén-Burguete, Servio Tulio, 2023. "Intra-hour photovoltaic forecasting through a time-varying Markov switching model," Energy, Elsevier, vol. 278(PB).
    18. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    19. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    20. He, Hui & Yang, Jiawen, 2011. "Regime-switching analysis of ADR home market pass-through," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 204-214, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:2:d:10.1007_s11336-018-9605-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.