IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20202484.html
   My bibliography  Save this paper

Spillover effects in international business cycles

Author

Listed:
  • Camacho, Maximo
  • Perez-Quiros, Gabriel
  • Pacce, Matías

Abstract

To analyze the international transmission of business cycle fluctuations, we propose a new multilevel dynamic factor model with a block structure that (i) does not restrict the factors to being orthogonal and (ii) mixes data sampled at quarterly and monthly frequencies. By means of Monte Carlo simulations, we show the high performance of the model in computing inferences of the unobserved factors, accounting for the spillover effects, and estimating the model's parameters. We apply our proposal to data from the G7 economies by analyzing the responses of national factors to shocks in foreign factors and by quantifying the changes in national GDP expectations in response to unexpected positive changes in foreign GDPs. Although the share of the world factor as a source of the international transmission of fluctuations is still significant, this is partially absorbed by the spillover transmissions. In addition, we document a pro-cyclical channel of international transmission of output growth expectations, with the US and UK being the countries that generate the greatest spillovers and Germany and Japan being the countries that generate the smallest spillovers. Therefore, policymakers should closely monitor the evolution of foreign business cycle expectations. JEL Classification: E32, C22, F42, F41

Suggested Citation

  • Camacho, Maximo & Perez-Quiros, Gabriel & Pacce, Matías, 2020. "Spillover effects in international business cycles," Working Paper Series 2484, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20202484
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2484~2a44d7faa5.en.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Tamim Bayoumi & Andrew Swiston, 2009. "Foreign Entanglements: Estimating the Source and Size of Spillovers Across Industrial Countries," IMF Staff Papers, Palgrave Macmillan, vol. 56(2), pages 353-383, June.
    3. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    4. Gregory, Allan W & Head, Allen C & Raynauld, Jacques, 1997. "Measuring World Business Cycles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 677-701, August.
    5. Haroon Mumtaz & Saverio Simonelli & Paolo Surico, 2011. "International Comovements, Business Cycle and Inflation: a Historical Perspective," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 176-198, January.
    6. S. Borağan Aruoba & Francis X. Diebold & M. Ayhan Kose & Marco E. Terrones, 2011. "Globalization, the Business Cycle, and Macroeconomic Monitoring," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 7(1), pages 245-286.
    7. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    8. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    9. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    10. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    11. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    12. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
    13. Ms. Hélène Poirson & Mr. Sebastian Weber, 2011. "Growth Spillover Dynamics From Crisis to Recovery," IMF Working Papers 2011/218, International Monetary Fund.
    14. Fabian Bornhorst & Mr. Ashoka Mody, 2012. "Tests of German Resilience," IMF Working Papers 2012/239, International Monetary Fund.
    15. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    16. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
    17. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    18. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    19. Jushan Bai & Peng Wang, 2015. "Identification and Bayesian Estimation of Dynamic Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 221-240, April.
    20. Carstensen, K. & Salzmann, L., 2017. "The G7 business cycle in a globalized world," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 134-161.
    21. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    22. Claudia Foroni & Massimiliano Marcellino, 2016. "Mixed frequency structural vector auto-regressive models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 403-425, February.
    23. Duarte, Agustin & Holden, Ken, 2003. "The business cycle in the G-7 economies," International Journal of Forecasting, Elsevier, vol. 19(4), pages 685-700.
    24. Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.
    25. Monfort, Alain & Vitale, Giovanni & Rüffer, Rasmus & Renne, Jean-Paul, 2003. "Is Economic Activity in the G7 Synchronized? Common Shocks versus Spillover Effects," CEPR Discussion Papers 4119, C.E.P.R. Discussion Papers.
    26. Nikolaos Antonakakis & Ioannis Chatziantoniou & George Filis, 2016. "Business Cycle Spillovers in the European Union: What is the Message Transmitted to the Core?," Manchester School, University of Manchester, vol. 84(4), pages 437-481, July.
    27. Vansteenkiste, Isabel & Dées, Stéphane, 2007. "The transmission of US cyclical developments to the rest of the world," Working Paper Series 798, European Central Bank.
    28. Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
    29. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    6. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    7. Grace Lee, 2011. "Aggregate shocks decomposition for eight East Asian countries," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 16(2), pages 215-232.
    8. Berger, Tino & Everaert, Gerdie & Pozzi, Lorenzo, 2021. "Testing for international business cycles: A multilevel factor model with stochastic factor selection," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    9. Karadimitropoulou, Aikaterini & León-Ledesma, Miguel, 2013. "World, country, and sector factors in international business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2913-2927.
    10. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    11. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    12. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    13. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    14. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    15. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    16. Grace H.Y. Lee & M. Azali, 2009. "A Bayesian Approach to Optimum Currency Areas in East Asia," Monash Economics Working Papers 18-09, Monash University, Department of Economics.
    17. Fernández, Andrés & González, Andrés & Rodríguez, Diego, 2018. "Sharing a ride on the commodities roller coaster: Common factors in business cycles of emerging economies," Journal of International Economics, Elsevier, vol. 111(C), pages 99-121.
    18. Tino Berger & Lorenzo Pozzi, 2016. "Is there really a Global Business Cycle? A Dynamic Factor Model with Stochastic Factor Selection," Tinbergen Institute Discussion Papers 16-088/VI, Tinbergen Institute.
    19. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    20. Berger, Tino & Richter, Julia, 2017. "What has caused global business cycle decoupling: Smaller shocks or reduced sensitivity?," University of Göttingen Working Papers in Economics 300, University of Goettingen, Department of Economics.

    More about this item

    Keywords

    Bayesian estimation; international business cycles; mixed frequency data; spillover effects;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F42 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Policy Coordination and Transmission
    • F41 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Open Economy Macroeconomics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20202484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.